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Abstract

The rapid evolution of artificial intelligence and the widespread embrace of

digital technologies have ushered in a new era of clinical research and

practice in hepatology. Although its potential is far from realization, these

significant strides have generated new opportunities to address existing

gaps in the delivery of care for patients with liver disease. In this review, we

discuss how artificial intelligence and opportunities for multimodal data

integration can improve the diagnosis, prognosis, and management of

alcohol-associated liver disease. An emphasis is made on how these

approaches will also benefit the detection and management of alcohol use

disorder. Our discussion encompasses challenges and limitations, conclud-

ing with a glimpse into the promising future of these advancements.

INTRODUCTION

Alcohol use disorder and the hepatotoxicity that can
result in alcohol-associated liver disease (ALD) repre-
sent a dual pathology with increasing prevalence,
marked heterogeneity, and several unmet needs in
diagnosis and management. These characteristics
make AUD and ALD apt for the application of AI
solutions, which can leverage large amounts of data to
unravel intricate patterns and correlations in disease. AI
algorithms have the capacity to process diverse data
sources to aid in the earlier detection of ALD, more
accurate prognostic assessments, and the development
of personalized treatment strategies.

Globally, 5.1% (283 million) of the population has
a diagnosis of AUD. It is estimated that 35% of

individuals with AUD will develop liver disease,[1]

further cementing the gravity of this intertwined
health concern. However, it remains less clear for
whom the risk of ALD is greatest and what predis-
posing factors exist in addition to alcohol use. ALD
encompasses a spectrum of diseases from asymp-
tomatic stages of hepatic steatosis to quality of life-
limiting presentations of decompensated cirrhosis
and HCC. Alcohol-associated hepatitis (AH) is a
severe inflammatory phenotype of ALD that has been
extensively studied as a discrete entity due to its
disproportionate contribution to hospitalizations and
high mortality. Therapies for AH remain confined to
corticosteroids[2] and early liver transplantation
(LT),[3] with limitations in their effectiveness and
accessibility, respectively.

Abbreviations: AASLD, American Association for the Study of Liver Diseases; ACCELERATE-AH, American Consortium of Early Liver Transplantation for Alcohol-
Associated Hepatitis; AH, alcohol-associated hepatitis; ALCHAIN, ALCoholic Hepatitis Artificial INtelligence; ALD, alcohol-associated liver disease; GLM, generalized
linear model; IRC, immune-related cells; LASSO, least absolute shrinkage and selection operator; LLM, large language model; LR, linear regression; LT, liver
transplantation; MAIN-ART, Michigan Alcohol Improvement Network-Alcohol Reduction and Treatment; MASLD, metabolic dysfunction-associated steatotic liver
disease; MIMIC-III, The Million Veteran Program and the Medical Information Mart for Intensive Care III; MLA, machine-learning algorithm; MLP, multilayer perceptron;
NIALC, normogram for intensive care unit patients with ALD-C; NLP, natural language processing; NLU, natural language understanding; PBMC, peripheral blood
mononuclear cell; RFE-RF, recursive feature elimination using random forest; TAM2, Technology Acceptance Model 2; VR, virtual reality; XAI, explainable AI.
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In recent years, the epidemiological landscape of ALD
has changed, with a marked surge in incidence among
women, minority individuals, and younger demographics.[4]

Simultaneously, the revised nomenclature for metabolic
dysfunction-associated steatotic liver disease (MASLD)
comes with a recognition that ALD falls within this larger
classification of steatotic liver disease as a spectrum with a
coexisting impact of both processes (“MetALD”).[5,6] These
trends signal the pressing need for advanced diagnostic
and prognostic tools to effectively address the heteroge-
neity within AUD-ALD and the complexities of its
management.[7] Existing approaches have traditionally
used clinical, biochemical, radiographical, and histological
data to diagnose ALD, predict disease outcomes, and
deliver synchronous treatment in conventional physician-
patient interactions. Despite advances in each of these
individual data-generating areas, there remain limitations in
accurately evaluating and prognosticating ALD.

To address these challenges, there is a growing
interest in harnessing the diverse sources of data and
power of AI to synergistically transform high-volume data
into meaningful solutions that enhance clinical research
and patient care. Multimodal data integration involves
synthesizing diverse data streams, including mobile and
wearable technology. From machine learning to natural
language processing, AI has the ability to analyze and
compute varied inputs of data with great speed and
accuracy. Advanced computing methods and the availa-
bility of digital technologies can also forge a path closer to
personalized medicine. However, the current utilization
of AI in ALD remains in its nascent stages.

In this review, we explore how AI and multimodal data
integration add substantial value to the understanding and
management of ALD, with an emphasis on their concur-
rent impact on the management of AUD. We include a
futuristic view of how AI, in combination with digital
technology, may revolutionize AUD-ALD care at a patient
and population level, acknowledging areas in which AI
remains undeveloped and in need of improvement.

RELEVANT DEFINITIONS AND
BENEFITS OF AI TO ALD

Recent in-depth reviews have supplied the essential
background information, definitions, and context pertain-
ing to AI in hepatology[8,9] and, thus, will not be discussed
here. We summarize key terms and concepts in Table 1.

CURRENT STATE OF AI IN ALD

Search strategy

To understand the depth of current publications in AI and
ALD, we performed a comprehensive search on PubMed
using Medical Subject Heading (MeSH) terms. Multiple

keywords for AI were paired with “alcohol” and classifiers
of liver disease. Examples included, but were not limited
to, “machine learning,” “deep learning,” “neural networks,”
“natural language processing,” “digital,” “sensors,” and
“computing.” Publications were reviewed in detail and
included in this review based on their relevance.

A total of 12 studies were identified that used
machine-learning algorithms (MLAs) with the aim of
enhancing diagnostic and prognostic capabilities in
ALD. Five of these studies focused specifically on
AH[10–13] (Table 2).

When searching particularly for investigations of
digital technologies in ALD, 5 additional studies were
found.[14–18] These efforts are primarily in the proof-of-
concept stages (Table 3).

Diagnosis of ALD

Unmet need: Early detection of ALD

Patients diagnosed with ALD often present at advanced
stages of liver disease and exhibit faster progression
compared to other etiologies.[19,20] In comparison to patients
with MASLD, those with ALD are more likely to develop
liver-related decompensation with a higher MELD scores,
resulting in an overall worse transplant-free survival.[19]

Moreover, a cross-sectional analysis involving 3453
patients across 17 international centers revealed that
ALD was less likely to be diagnosed at early, reversible
stages when compared to etiologies such as hepatitis C.[20]

Various factors contribute to this trend. Individuals at high
risk of liver-related complications due to AUD may not
commonly seek care in primary care or hepatology clinics
where screening tools for alcohol misuse are available.
Instead, their presentations may be related to other
consequences of alcohol use, such as complicated
withdrawal or other end-organ damage (eg, alcohol-associ-
ated pancreatitis, peripheral neuropathy, cardiomyopathy,
etc). This perspective suggests the existence ofmultiple time
points and missed opportunities for early intervention.

While noninvasive modalities like the Fibrosis-4
index have been developed to predict advanced
fibrosis,[21] there is still a lack of models designed for
ALD prediction. Therefore, there is a pressing need for
the development of automated, proactive approaches to
enhance early detection and intervention for ALD.

AI-driven solutions. In a national study using the Danish
Health Registry Data from 1996 to 2014, MLAs were
applied to uncover relevant upstream diagnoses in
patients who developed alcohol-associated fibrosis and
cirrhosis.[22] Of 33,391 patients identified with ALD in this
national registry, the vast majority had alcohol-associated
cirrhosis (69.7% or 23,271), and only a small cohort of 499
were identified at an earlier and potentially reversible
stage of alcohol-associated fibrosis. Six categories of
comorbid diagnoses emerged from a case-control
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analysis powered by AI clustering techniques that may
predict for later development of ALD.[22] Certain catego-
ries, such as those associated with liver dysfunction and
alcohol overuse, were predictable, while others, like
malnutrition, trauma, and upper intestinal mucosal issues
(such as esophagitis), represented diagnoses to which
ALD is not automatically linked. This study was powerful in
successfully extracting meaningful predictive information
with the assistance of AI from a country-wide database.

Unmet need: Distinguish ALD and AH from
similar presenting etiologies

In current practice, standard biochemical assessments
are used to both suspect and confirm recent alcohol use

and alcohol-associated liver injury. To quantify alcohol
AUD consumption, biomarkers, such as urine ethyl
glucuronide and serum phosphatidylethanol, are rou-
tinely measured.[23,24] Elevations in serum gamma-
glutamyl transpeptidase, mean corpuscular volume,
and elevations in the ratio of aspartate transferase:
alanine transferase signal toward either recent alcohol
use or alcohol as etiology for liver injury.[25]

However, biochemistries alone have been limited in
the ability to characterize early versus later stages of
ALD, as well as distinguishing between other hepato-
biliary disease entities.[10] Furthermore, radiographic
modalities such as ultrasound, elastography, and cross-
sectional imaging are helpful in the evaluation of
advanced liver fibrosis, though they are not currently
used to determine etiology.

TABLE 1 Key terms and concepts related to AI

AI: is an inclusive term to describe the ability of machines to perform tasks that otherwise require human reasoning or problem-solving skills.
Subsets of AI, like machine learning and deep learning, have been made possible by advances in computing power over the last several
decades. Their development and use have been, in part, a response to an exponential increase in data sources along this timeline.
Explainable AI (XAI) refers to AI systems’ ability to provide understandable explanations for their decisions, enhancing transparency and
user trust. Generative AI refers to a category of AI systems with the ability to produce new content such as text, images, or other media,
often based on given prompts or input data.

Data streams: increasingly available, high-dimensional, and complex data has driven the need and use of AI in research and patient care. The
EHR has been a primary source of both structured data—such as patient demographics, diagnostic codes, laboratory, and imaging results—
as well as unstructured data generated from clinical notes. In addition, advances in sequencing have enhanced the granularity of data with
the ability to analyze multiple “omes” (including, but not limited to the genome, proteome, microbiome, metabolome, lipidome, epigenome,
and metabolome) at a single-cell level.

Deep learning: involves the use of neural networks containing complex layers of functions. Multiple algorithms are woven together and
arranged in layers from which infinite patterns can be generated. Deep learning has been particularly used to process and analyze images
and, thus, has been adopted more readily by radiology and pathology.[8]

Digital technologies are innovative and increasingly used sources of data. These technologies include, but are not limited to telemedicine,
remote monitoring, mobile phones, wearables, sensors, and virtual reality.[10] Mining data from social media platforms or online forums can
also provide unstructured information on patient experiences, perceptions, and population-level patterns. The process of using data from
digital sources to better understand individuals’ behaviors and improve their health is called digital phenotyping.

Machine learning: describes AI techniques in which algorithms build mathematical models from sample data. Supervised learning allows for
predictive modeling, exploiting annotated data sets to train algorithms and predict outcomes. Unsupervised learning methods uncover
patterns and structures from data without predefined labels. In this review, we emphasize the benefits of pairing machine-learning
techniques with complex data derived from diverse data sources.

Machine-learning pipeline: refers to the process of creating and using a machine-learning algorithm (MLA). Available data are typically split
into a training set and a testing set. Data are extracted and prepared to be fed into MLAs. From these, the best fit of the data is determined,
and a model is created that is then further optimized. Next, a testing set, often an external data set, is used to validate the model. Finally, the
performance of the model is evaluated such as through calculating the AUC-receiver operating characteristic, often with comparison to
established scores or tools already in clinical use.

Multimodal data integration: refers to combining single-stream data modalities toward the goal of deep phenotyping and personalized
medicine. Mimicking how clinicians seamlessly incorporate data across modalities in clinical decision-making, AI can take outputs from
multiomics data, imaging, and EHR data that contain patterns otherwise uninterpretable by humans/clinicians to create diagnostic
biomarkers or identify therapeutic targets.[11]

Natural language processing (NLP): is a subset of AI focused on enabling computers to understand, interpret, and generate human
language in a way that is both meaningful and contextually appropriate.

Natural language understanding (NLU): specifically focuses on the ability of computers to comprehend and interpret human language input,
extracting meaning and context from text or speech data.

Neural networks: are computational models inspired by the human brain, composed of interconnected nodes organized into layers. They
process information through these layers to learn patterns from data and perform tasks like classification and pattern recognition.

Sensors: devices or components that detect and respond to physical stimuli from the environment, converting them into measurable signals or
data.

AI AND MULTIMODAL DATA STREAMS IN AUD AND ALD | 3
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TABLE 2 AI and ALD studies: summary table for studies to date using AI approaches, mainly through MLAs, to improve diagnosis and prognosis in ALD

Aim Study Patient cohorts Data stream(s) AI classifier Findings

Identify upstream
diagnoses for earlier
detection/prediction of
ALD

Grissa et al[22] Danish health registry data 1999–2014
ALD (N = 33,391)
ALD-fibrosis (ALD-F)

(n = 499)
ALD-Cirrhosis (ALD-C)

(n = 22,271)

Clinical data MLAs: SVM, RF,
LightGBM,
Naïve Bayes

• Comparison of ALD-C versus non-ALD controls
identified 6 categories of statistically significant
upstream diagnoses (liver dysfunction, alcohol
overuse, malnutrition, trauma and injuries, upper
intestinal mucosal, other)

• MLAs tested prediction of ALD based on
upstream diagnoses: in training model ALD-C
AUC 0.89. In ALD-F AUC dropped to 0.67.

Distinguish ALD from
MASLD; distinguish
ALD-C from ALD-NC

Sowa et al[26] MASLD (n = 31)
ALD-C (n = 51)
ALD-NC (n =51)

Laboratory data MLAs: LR, DT,
SVM, RF

• High ALT/AST ratio and low levels of adiponectin,
TNF-alpha distinguished MASLD from ALD

• MLAs distinguished MASLD vs. ALD-NC
(AUC=0.92), ALD-C vs. ALD-NC (AUC = 0.98)

Distinguish AH from
acute cholangitis

Ahn et al[10] Training cohort: N = 459 AH (n = 265)
Acute cholangitis

(n = 194)
External cohort: MIMIC-III database (N = 305)
AH (n = 92)
Acute cholangitis

(n = 213)

Clinical and
laboratory data

8 Supervised
MLAs: LR, DT,
SVM, RF, GBM,
Naïve Bayes,
ANN, kNN

• Best 5-variable subset by MLAs AUC 0.994 vs.
physicians (tested by survey) with AUC 0.790 in
distinguishing AH from acute cholangitis

• MLAs had accuracy up to 0.932 and AUC up to
0.986 on the training data set, external validation
had accuracy up to 0.909 and AUC up to 0.970

Identify imaging features
that can accurately
diagnose AH

Tana et al[11] AH (n = 34)
No ALD controls (n = 35)

Imaging data (CT) Texture features
RFE-RF
Deep learning—
CNN

• RFE-RF identified 23 top features to classify AH
images, producing a model with an accuracy of
82.4% in the test set

• Deep learning CNN had an accuracy of 70% in
test sets

Identify imaging features
to diagnose ALD-C
from other etiologies
of cirrhosis

Luetkens et al[28] N = 465
ALD-C (n = 221)
Other cirrhosis (n = 244)

Imaging data
(MRI)
T2-weighted single-

slide images at
caudate lobe split
for training and
validation

Deep learning—
CNN

• Two different CNN architectures—ResNet50 and
DenseNet121 were evaluated on testing data

• ResNet50 with unfrozen pretrained parameters
had the highest classification performance for
ALD-C with AUC 0.82

Identify alcohol relapse
risk after early LT for
AH

Lee et al[12] ACCELERATE-AH (after LT for AH)
Training cohort: n = 91, 8 centers
Validation cohort: n = 25, 2 centers

Clinical data MLAs: LR, RF,
XGBoost

• Training set had an AUC of 0.930, PPV 0.891
• External validation set had an AUC of 0.692, PPV
0.82

• Variables related to social support and substance
use correlated with prediction of post-LT harmful
alcohol use

Creation of NIALC Zheng et al[38] Training cohort: N = 394 ICU patients from
MIMIC-III database

Validation cohort:
ICU patients with ALD-C
Internal (n = 394)
External (n = 501)

Clinical data MLAs: Regression
analysis
method, LASSO

• Development of NIALC score with AUCs in
validation cohort: 0.767 and 0.760

• NIALC score outperformed existing scores for
liver disease severity and prognosis such as
MELD, MELD-Na, CPC, and CLIF-SOFA
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Develop an AI-
generated model to
predict 90-day
mortality in AH
superior to MELD

Dunn et al[13] GlobalAlcHep network
N = 1720 (22 centers, 9 countries)

Clinical Data MLAs • MLAs helped produce the ALCHAIN score (age,
BUN, albumin, bilirubin, Cr, INR, NLR) with AUC
0.79 for predicting AH 90-day mortality

• ALCHAIN score superior when compared to
MELD, MELD-Na, MELD 3.0, MDF, ABIC, and
Glasgow-AH

Create a model to
predict 90-day
mortality for AH with
stool “omics” data.

Gao et al[34] AH (n = 210), 10 centers Clinical data
Laboratory data
Stool samples-micro/
mycobiome/virome

“omics”

MLAs: LR, RF,
SVM, GBM

• Gradient boosting achieved the highest AUC of
0.87 for 30-day mortality prediction using the
bacteria and metabolic pathways data set, and
AUC of 0.87 for 90-day mortality prediction using
the fungi data set

• MLA-produced model had better prediction than
MELD (AUC 0.78 for 30-day mortality and AUC
0.82 for 90-day mortality)

Create a model using
proteomic biomarkers
to predict alcohol-
associated fibrosis

Niu et al[36] Training cohort N = 596
Early ALD (n = 459)
Healthy controls (n = 137)
Validation cohort (n = 63)

Laboratory data
Liver biopsy samples
Plasma samples

MS-based
proteomics

MLAs—LR

• MLAs identified proteomics biomarkers panels
that detected fibrosis (AUC 0.92, accuracy 0.82)
and mild inflammation (AUC, 0.87, accuracy,
0.79)

• Biomarker panels predicted future liver-related
events (C-index 0.90) and all-cause mortality (C-
index 0.79)

Identify gene signatures
that can distinguish
ALD

Listopad et al[35] AH (n = 32)
ALD-C (n = 8)
Other liver disease (n = 19)
Healthy controls (n = 8)
Validation RNA-sequency data set:
AH (n = 10)
ALD-C (n = 6)

Laboratory data
Liver biopsy samples
PBMCs

RNA sequencing
MLAs—LR, SVM,
kNN

• Liver tissue RNA-seq data, when analyzed with
MLAs, yielded a model with 33 genes that were
able to distinguish between AH, ALD-C, and
healthy conditions with an accuracy of 90%
(internal data set) and 82% (external validation
sets)

Develop an IRC-based
machine-learning
model to aid in the
diagnosis and
prognosis of ALD

Zhang et al[37] ALD (n = 207)
Healthy controls (n = 234)

Laboratory data
Immune-related cells

MLAs—RF, GBM,
MLP, GLM

• RF models have the greatest performance of
MLAs tested for ALD diagnosis and prognosis

• Combination of 8–13 variables (gender and
measures of IRCs) predicted the greatest risk for
ALD progression with AUC between 0.9 and 1.00
in the testing and training data sets

Abbreviations: AH, alcohol-associated hepatitis; ALCHAIN, ALCoholic Hepatitis Artificial INtelligence; ALD, alcohol-associated liver disease; ANN, artificial neural network; CNN, convoluted neural network; DT, decision tree;
GBM, gradient boosting machine; GLM, generalized linear model; IRC, immune-related cells; kNN, k-nearest neighbor; LASSO, least absolute shrinkage and selection operator; LR, linear regression; MASLD, metabolic
dysfunction–associated steatotic liver disease; MDF, Maddrey’s discriminant function; MIMIC-III, Million Veteran Program and the Medical Information Mart for Intensive Care III; MLA, machine-learning algorithm; MLP,
multilayer perceptron; NIALC, normogram for intensive care unit patients with ALD-C; PBMC, peripheral blood mononuclear cell; RF, random forest; RFE-RF, recursive feature elimination using random forest; SVM, support
vector machine.
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TABLE 3 Digital technologies and ALD studies: summary table for studies to date evaluating the use of digital data streams in ALD management

Aim Study Patients Digital technology Findings

Feasibility: Quantitative and qualitative
assessment of patients with ALD using
alcohol biosensor

DiMartini et al[14] ALD (n = 27) Wrist Transdermal Alcohol
Sensor

• Quantitative data TAM2 13-item assessment +
qualitative assessment

• Limitations: Minor inconveniences causing
participants to not consistently wear the
biosensor; technological challenges (devices lost/
damaged, data lost)

• Patients with severe AUD and the heaviest alcohol
consumption (n = 2 in this study with >20 drinks/
d) hardly used the biosensor 7% and 13%

Proof of concept: App with behavioral change
techniques and digital breathalyzer with
primary outcome alcohol use reduction

Mehta et al[15] ALD (n = 41) AlcoChange
Mobile application
Novel digital therapeutic with
validated behavior change
techniques and a digital
alcohol breathalyzer

• Adherence to app usage correlated with a
significant reduction in alcohol use p = 0.029,
higher rate of abstinence at 3 mo, and reduced
risk of alcohol-associated readmission in 12 mo (p
= 0.008)

Feasibility: Primary outcome was the
acceptability of the app along with the
recruitment/retention rate; the aim was to
increase AUD treatment

Mellinger et al[16] ALD (n = 60)
Randomized 1:1 to

intervention vs. usual
care

MAIN-ART
Online/phone application
Single session of two modules

• Primary outcome: Recruitment rate (46%) and
retention rate (65% at 6 mo), acceptability of App
(>90%)

• Secondary outcomes: Increased AUD treatment at
6 mo in intervention group

• Limitations: Survey fatigue

Mixed methods: Qualitative study to see if app
can motivate ALD patients to seek treatment

Park et al[17] ALD (n = 11) mHealth digital health mobile
application

• App useable and viewed favorably among
participants

• Preliminary results suggest ALD is a motivator for
patients to seek treatment for AUD

Proof of concept: Ability of passive sensor data
to correlate with EMAs for alcohol cravings
and risk of relapse

Wu et al[18] ALD (n = 24) (50%
retention rate)

AWARE mobile application with
collection of passive sensor
data and delivery of EMAs

• Associations between alcohol craving and mood
(positive association with negative moods;
negative correlations with positive mood)

• Less movement/less change in location entropy
associated with an increase in craving score

• Accelerometer magnitude higher in those who
experienced alcohol relapse

Abbreviations: ALD, alcohol-associated liver disease; EMA, ecological momentary assessments; MAIN-ART, Michigan Alcohol Improvement Network-Alcohol Reduction and Treatment; TAM2, Technology Acceptance Model
2.
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AI-driven solutions. Among the earliest adoptions of
MLAs to ALD research was by Sowa and colleagues in
2014, who investigated the ability of various cytokines
to distinguish ALD from MASLD. The ratio of alanine
transferase:aspartate transferase favored a specificity
for MASLD over ALD. Additional cytokine analysis
showed that adiponectin and TNF-alpha levels were
lower in MASLD compared to ALD, while cell death
markers were higher in ALD.[26] By combining laboratory
data and cytokine analysis, the authors demonstrated a
basic multimodal strategy for improving the diagnosis
of ALD.

AH is a severe clinical manifestation within ALD that
relies on the combination of substantial recent alcohol
use, cholestatic liver injury, and signs of acute
inflammation.[27] The biochemical features have similar-
ities to acute cholangitis, which, on initial presentation to
emergency rooms or critical care settings, can cause
diagnostic confusion and delays. Ahn and colleagues
developed an AI model from MLAs capable of discern-
ing acute cholangitis from AH using 5 standard
laboratory values with an accuracy of >90%. When
compared to surveyed physicians, the 5-variable subset
statistically outperformed clinical judgment (AUC: 0.790
vs. 0.994). An important element of this study was its
direct comparison to the current standard of care,
highlighting the super-human or “super-physician”
capabilities of AI modeling outputs.[10]

Deep learning methods with convoluted neural net-
works have been employed in 2 radiology studies to
assess whether cross-sectional imaging can accurately
diagnose AH[11] as well as alcohol-associated
cirrhosis.[28] In their analysis of CT studies in 34 patients
with AH and 25 controls, Tana et al[11] found that a
machine-learning technique of recursive feature elimi-
nation could effectively discriminate between radio-
graphic features most and least relevant for ALD
diagnosis. The radiographic features identified by
convoluted neural network involved intricacies of pixel
distributions and intensities that would not have been
possible by human interpretation alone.[11] Similarly, a
deep learning approach of T2-weighted MRI images
from 465 patients with cirrhosis was able to construct a
convoluted neural network architecture that could
distinguish alcohol-associated cirrhosis from other
etiologies of cirrhosis with an AUC up to 0.82.[28]

These preliminary studies have demonstrated the
diagnostic potential of AI in ALD and reinforced that the
success of machine-learning approaches depends on
the quality of input data. Further research in ALD also
stands to benefit from insights gained from research in
MASLD and HCC. Studies employing machine-learning
models for MASLD have already exhibited superiority
over traditional noninvasive tests like FibroScan,
Fibrosis-4 Index, FibroScan-aspartate transferase
(FAST), and NAFLD Fibrosis Score.[29] Deep learning
applications have already achieved advanced uses in

HCC among other primary liver malignancies with
combinations of different types of imaging such as
ultrasound, CT, and MRI being used simultaneously for
increasing diagnostic accuracy.[30]

Prognosis

Unmet needs: Biomarkers for predicting
outcomes in ALD and AH

ALD is a heterogenous process, and the influence
of ongoing alcohol use, genetic predispositions, and
epigenetic contributions can significantly affect an
individual’s rate of liver disease progression.[31] These
characteristics of ALD contribute to the difficulties in
finding reliable biomarkers for risk stratification.[32]

There has been significant interest in predictive
models, particularly for AH. MELD and its subsequent
versions, like MELD 3.0, have been validated for use in
ALD and AH.[33] They have adequate performance for
predicting short-term mortality and appropriate alloca-
tion for those listed for LT. These existing models were
created using logistic regression, which is a supervised
machine-learning approach; however, they lack incor-
poration of nuances specific to ALD pathogenesis.

AI-driven solutions. “Omics” sciences—including, but
not limited to genomics, lipidomics, metabolomics,
proteomics, and transcriptomics—have allowed for the
study of ALD at an immuno-molecular level and have
produced vast quantities of data that are well suited for
the use of AI. In a study of serum and fecal samples
from 210 patients with AH, Gao et al[34] were able to use
MLAs to narrow considerable amounts of viral and
bacterial pathway data produced by metabolomics and
lipidomics into an 11-variable model that exceeded the
MELD score in 30-day and 90-day mortality predictions.
To aid in the discovery of relevant genetic biomarkers
for ALD, Listopad and colleagues fed data obtained
from RNA-sequencing performed on peripheral and
liver tissue samples into a machine-learning pipeline.
They discovered a set of 33 gene biomarkers that
differentiated alcohol-associated cirrhosis and AH from
other liver diseases and healthy controls with an
accuracy of 90% within their internal data set and
82% in the external validation cohort.[35] In a similar
approach of using peripheral and liver tissue samples
from patients with early ALD, Niu et al located proteomic
markers with MLAs tested on data from mass-spec-
trometry–based, high-throughput proteomic analysis.
The biomarker panels developed outperformed existing
noninvasive fibrosis tests, including Fibrosis-4 Index,
enhanced liver fibrosis, and aspartate transferase to
Platelet Ratio Index scores. Furthermore, there was a
significant overlap seen between liver and plasma
proteomes, suggesting that a liquid biopsy approach
using proteomic biomarkers is reliable for ALD.[36]
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Although these studies were limited by a small sample
size, they illustrate the synergy and translational power
of pairing AI with multiomics in developing noninvasive
prognostic biomarkers for ALD.

While the cost of “omics” tools has fallen consider-
ably over the last 2 decades, novel biomarkers from
these methods face considerable obstacles to adoption
in routine clinical use. Thus, the use of AI to produce
highly specific models from readily available, low-cost
laboratory parameters is a desirable strategy. In a study
by Zhang and colleagues, immune-related cells such as
neutrophils and lymphocytes were included in a
nomogram alongside other variables such as sex,
age, and components of the complete blood count in
patients with ALD in comparison to healthy controls.
IRC-based MLAs were then analyzed with a sophisti-
cated AI statistical tool called the least absolute
shrinkage and selection operator (LASSO). This regres-
sion analysis method enhanced prediction accuracy
and interpretability in ALD onset, progression, and
prognosis.[37] The models also were able to correlate
with a MELD score cutoff > 20 that has been
established for ALD severity. A recent global study
focusing on AH also incorporated neutrophil to lympho-
cyte ratio in the AI-produced ALCHAIN score (other
components were age, international normalized ratio,
bilirubin, creatinine, albumin, and blood urea nitrogen),
which better selected patients who would survive and
respond to corticosteroids than MELD based scores
and Maddrey’s discriminant function.[13]

In addition to generating general biomarkers for ALD,
predictive modeling using AI can assist decision-making
in specific patient scenarios. The nomogram for
intensive care unit patients with alcohol-associated
cirrhosis (NIALC) was created using LASSO feature
selection by Zheng et al[38] to improve estimates of
mortality in hospitalized, critically ill patients with ALD.
The NIALC was compared to Child-Pugh and the acute-
on-chronic liver failure (CLIF-ACLF) scores and facili-
tated more individualized predictions.

The studies discussed here show that ALD bio-
markers can be produced through AI-powered analyses
of “omics” data in combination with other clinical,
histological, and laboratory parameters.

Unmet need: Identify the risk of return to
alcohol use

Sustained remission of alcohol use has repeatedly been
shown to be a strong predictor for survival and
recompensation in ALD.[39,40] The ability to identify
which patients are most vulnerable to alcohol relapse
and at which time points along their disease continuum
would have far-reaching benefits, from preventing
cirrhosis-related hospital readmissions, to preserving
allograft survival in patients undergoing LT for ALD.

AI-driven solutions. Disease recurrence is common
after LT for most indications and is a major concern in
ALD if patients return to harmful alcohol use. Thus,
efforts to identify intervenable psychosocial and behav-
ioral risk factors for relapse are of great importance to
liver graft and overall survival. A recent study sought to
achieve this aim using the multicenter American
Consortium of Early Liver Transplantation for Alcohol-
Associated Hepatitis (ACCELERATE-AH) database
and MLAs derived from narrative psychosocial evalua-
tions recorded in these patients. Variables related to
social support and concomitant substance use emerged
as the strongest predictors for post-LT return to alcohol
use. The intended uses of these findings are to ensure
timely interventions to patients in danger of recidivism
and optimize LT selection practices. To this latter end,
AI algorithms have already been proposed with deep
learning techniques to automize LT listing decisions to
which psychosocial parameters could be added.[41]

Novel digital data sources could further aid in real-
time prediction and prevention of return to alcohol use.
A recent study illustrating this concept by Wu and
colleagues showed that smartphone sensors may serve
as surrogate measures of alcohol craving as it relates to
mood. Through digital phenotyping, the authors identi-
fied that various mood types and sensor features
related to location and mobility were associated with
alcohol cravings. Certain sensor features were also
noted to be associated with relapse at 90 days, though
none of the features achieved statistical significance
after adjusting for multiple sensor features. Never-
theless, this signal between smartphone data and
relapse demonstrated the feasibility of using novel data
from readily available digital technologies as potential
markers of disease and prediction of outcomes.[18]

The studies described highlight how AI has already
contributed to enhancing prognostication in ALD. An
even greater opportunity lies with multimodal integra-
tion. For example, an MLA simultaneously incorporates
genomics data and smartphone-derived sensor data or
a comprehensive molecular signature composing mul-
tiomics data. These are combinations of data and
patterns impossible to ascertain without AI computing
power (Figure 1).

Management

Unmet need: Achievement of AUD remission
and prevention of relapse

An area in which we remain the most limited is the
management of ALD. While we appropriately recognize
that AUD treatment is an essential component, there
has been little advancement in pharmacological
agents approved to help patients combat cravings.
Existing medications for AUD, such as naltrexone and
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acamprosate, can prevent return to harmful drinking
and progression of ALD,[42] though they are consistently
underprescribed.[43] Behavioral interventions, either
paired with medications for AUD or used independently,
are more effective, but our current delivery systems
make accessibility and scalability difficult for popula-
tions with limited access to care. Recently, multidiscipli-
nary clinics have been developed involving psychiatry
and addiction specialists alongside hepatologists.
These models center on colocalization of AUD-ALD
care and there has been published success in the
patients served by these clinics.[44,45] One major
obstacle to their wider implementation is the degree of
resources and work force they require. Furthermore, our
existing pharmacotherapies and behavioral interven-
tions adhere to a generic, one-size-fits-all model,
lacking a personalized approach.

AI-driven solutions. Digital technologies are growing
in usage through patient-facing health care applications
and are uniquely equipped to help patients seeking to
quit alcohol use. From mobile health apps and wearable
devices to telehealth platforms, these technologies
have the potential to empower patients with real-time
data collection and delivery of treatment interventions.
Recently, studies have evaluated the feasibility and

usability of such devices (Table 3). In a study by
DiMartini and colleagues, 27 patients with ALD were
enrolled and provided with a wrist transdermal alcohol
biosensor to wear for 3 months. While the study was not
powered for adequate subanalysis, the authors showed
that 2 individuals with the highest severity of AUD and
heaviest alcohol consumption had the lowest
adherence rate when wearing the biosensor.[14]

In the study previously described by Wu and
colleagues, smartphones were demonstrated to offer
an innovative solution for collecting markers of behavior
in ALD. Understanding such digital biomarkers can
further guide the collection of real-time data and delivery
of treatment interventions to connect individuals to care
before they experience a return to drinking.[14,18]

Early efforts are in the process of using digital
applications to help patients with ALD seek AUD
treatment[16,17] (Table 3). Overall, recruitment and
retention rates have been modest in pilot studies,
though participants have consistently viewed web and
mobile applications as useable and favorable. In a
feasibility study of a single session online or mobile
application to improve engagement in AUD treatment
(“MAIN-ART” Michigan Alcohol Improvement Network-
Alcohol Reduction and Treatment), the recruitment rate
was 46%, and the retention rate was 65% at 6 months[16];
however, acceptability was rated at over 90%.

Only one study thus far has attempted to quantify the
ability of digital technology to reduce alcohol use among
patients with ALD. Mehta and colleagues trademarked
a custom-built mobile application called AlcoChange
that uses nudge behavioral therapy techniques to
promote alcohol cessation. In a proof-of-concept study
of 41 patients with ALD, adherence to app usage
correlated with a significant reduction in alcohol use
(p = 0.029), a higher rate of abstinence at 3 months,
and a reduced risk of alcohol-associated readmission in
12 months (p = 0.008).[15]

Digital technologies offer numerous advantages in
terms of patient engagement and empowerment. In
contrast to conventional pharmacotherapies, they pose
fewer physical adverse effects. However, it is essential to
note that digital tools carry the potential for technological
malfunctions and unintended secondary consequences.
As reflected in the retention rates of recent studies, the
requirement of frequent active participation assess-
ments, for example, can lead to response fatigue.

SPECIAL CONSIDERATIONS

Researchers, clinicians, developers, and implementors
of AI-driven solutions for ALD have the moral imperative
to ensure their reliability, equity, and practicality.
Accordingly, it is crucial to recognize that AI will not
replace the need for human involvement as physicians
and researchers; instead, AI will primarily serve as an

F IGURE 1 Multimodal data integration: Multiple sources of data
aid in the diagnosis and prognosis of ALD. Traditional data sources,
depicted on the left panel, typically require patients to be seen in
physical encounters either during a hospitalization or clinic visit.
Emerging digital data sources, depicted on the right panel, transform
this paradigm by enabling continuous monitoring and remote data
collection, offering insights into patient health outside of conventional
clinical settings. Maximizing the integration of data streams across
diverse sources enhances our diagnostic and prognostic abilities
significantly, highlighting the importance of combining information from
various modalities for more comprehensive insights into ALD.
Abbreviation: ALD, alcohol-associated liver disease.
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adjunct to enhance patient care in ALD. A human
presence remains vital throughout this process, ensur-
ing ethical use and interpretation of AI-generated
insights. ALD inherently includes a behavioral compo-
nent where provider empathy plays a significant role in
establishing trust and connection with patients, an area
where human capacity remains superior to AI. The
many challenges and limitations brought by AI are not
novel to ALD. However, by appropriately acknowledg-
ing potential disparities and operationalizing strategies
to overcome them, ALD could inform and improve AI in
a reciprocal fashion (Table 4).

Bias

The advancement of study in diseases affected by
alcohol and substance use disorders has historically
faced discrimination and neglect, reflected in ALD
specifically through the sustained use of stigmatizing
language,[46] underfunding, and the scarcity of patient-
centered resources.[47] Seeking out and cultivating AI
and digital approaches to diagnose and treat AUD-ALD
is itself a powerful form of advocacy as it assigns
research priority to issues that affect many underserved
populations.[48] However, there is also the undesirable
prospect of big data approaches perpetuating existing
biases on a larger scale.

Relationships between social determinants of health
and alcohol consumption have been neither linear nor

predictable.[49] Certain minority populations carry a
disproportional burden with ALD, such as Hispanic,
American Indian, and Alaska Native groups.[50] Genetic
predispositions, typified by polymorphisms in patatin-like
phospholipase domain-containing protein 3 (PNPLA3),
further contribute to the rapid progression of steatosis
and overall ALD risk, especially in Hispanic
individuals.[51] Through the COVID-19 pandemic, alcohol
consumption increased the most among Black individu-
als and females,[52] the same 2 subgroups that have the
least access to LT for ALD.[53] There are also sex
differences in alcohol metabolism that contribute to
females presenting with ALD despite lower overall
alcohol consumption.[54]

Given these differences, prediction models and
decision tools built by AI need to consider the impact
of conceivable modifiers such as sex, gender, estab-
lished genetic polymorphisms, race, and ethnicity. The
ideal AI-developed model for the diagnosis and
prognosis of ALD would be able to balance biological
susceptibility and social determinants of health. At a
minimum, transparency of how AI algorithms are
created, tested, and disseminated is crucial. As AI
prognostic models seek routine use in ALD, possible
biased outcomes should be evaluated at every step of
the machine-learning pipeline, both before and after
deployment. Follow-up studies examining outcomes
such as access to care and LT will be important, with
adjustments inevitably required to ensure equity across
sex and ethnicity.

TABLE 4 Benefits, risks, and mitigation strategies for the use of AI in ALD

Benefits Risks Mitigation Strategies

Diagnostic
accuracy

AI can enhance the detection of AUD/
ALD by analyzing complex patterns in
large data sets, leading to earlier and
more accurate diagnoses.

AI models may replicate or amplify
existing biases in data,
potentially leading to
misdiagnosis.

Use diversified training data sets that
include a wide range of demographic
and clinical characteristics. Regularly
update and audit AI models to ensure
accuracy and fairness.

Personalized
treatment

AI enables the customization of
treatment plans based on individual
patient data, improving treatment
efficacy and patient outcomes.

There is a risk of privacy breaches
with the use of personal data in
AI systems.

Implement robust data encryption and
access controls. Ensure compliance
with data protection regulations like
GDPR or HIPAA.

Cost
efficiency

By automating routine tasks and
improving resource allocation, AI can
reduce health care costs associated
with AUD/ALD and increase scalability.

Dependence on AI could lead to
reduced involvement of health
care professionals.

Develop policies that promote the
complementary use of AI and human
expertise, ensuring AI supports rather
than replaces human expertise.

Clinical
research

AI can accelerate research by efficiently
processing and analyzing large data
sets, identifying new potential
therapeutic targets.

Complex AI models may produce
“black box” decisions that are
difficult to interpret, complicating
clinical decision-making.

Incorporate explainability frameworks in
AI development. Train health care
professionals in AI usage and
interpretation. Recommend AI systems
be “glass box” and not “black box”

Long-term
monitoring

AI systems can continuously monitor
patients, providing real-time insights
into patient health and early warnings
of disease progression.

Continuous monitoring raises
concerns about patient privacy
and the potential misuse of
surveillance data.

Clearly communicate the purpose and
extent of monitoring to patients and
obtain informed consent. Use
anonymization techniques to protect
patient identities.

Abbreviations: ALD, alcohol-associated liver disease; GDPR General Data Protection Regulation.
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Infrastructure

Decisions to focus research efforts on AI and digital
technologies in ALD are accompanied by a commit-
ment to building the necessary infrastructure. Willing-
ness among individual researchers and institutions to
collaborate and share access to data will accelerate
the speed and impact AI is able to have on the field. In
ALD, consortiums for AH, such as AlcHepNet[55] and
GlobalAlcHep,[33] have already been formed with large
repositories to aggregate and harmonize large-scale
data. The Million Veteran Program and the Medical
Information Mart for Intensive Care III (MIMIC-III) are
other examples of national, multimodal data sets. The
digitization of histopathological and radiological data
has further facilitated the ease of making data
available that can be used simultaneously for different
purposes. Strategic investments and policy changes
can also assist in funding and fostering efforts to
improve data sharing, data storage, and advanced
analytic platforms.

Clinicians dually trained in addiction medicine and
hepatology have a unique skill set to bring to AUD-ALD.[56]

Similarly, academic hepatologists well versed in
computational science and informatics will be posi-
tioned well for earlier implementation of AI to ALD
research. In addition, there will remain a need for
dedicated data scientists and biostatisticians to be part
of the inter-disciplinary team.

Standardization and interpretability

There is a current lack of standardization in the use of AI
in clinical research, posing challenges for comparison
and reproducibility across studies. Without a unified
framework or set of benchmarks for AI platforms in ALD
studies, questions remain unanswered regarding what
should be established as the “gold standard” in ALD for
diagnostic or prognostic comparators.

While machine-learning models offer high accuracy,
their nonlinear relationships often lack explainability.
Addressing the “curse of dimensionality,”[57] particularly
in risk prediction scores, is crucial for building trust and
overcoming inherent barriers. Balancing simplicity and
convenience against the complexity of decision-making
is a challenge that requires careful navigation.

To address these issues, collaborative initiatives
aimed at establishing guidelines similar to those set for
clinical trial endpoints will be invaluable. These efforts
can help ensure consistency and comparability across
studies, enhance the interpretability of AI-driven insights,
and ultimately improve patient care outcomes in ALD.

Implementation and regulation

Ethical and privacy concerns, particularly in the context
of user-generated data from digital technologies not
subject to regulations like the HIPAA, represent

F IGURE 2 Conceptual framework of digital twin for ALD. The image illustrates the process of collecting digital phenotyping data from a model
patient with alcohol-associated liver disease in a physical space, which is then integrated into the digital space. AI analyzes these data alongside
information from other patients at various disease stages. The digital twin interface uses these data to predict the patient’s risk of disease
progression, transplant-free survival, and to tailor personalized treatment plans for managing AUD and preventing relapse. Portrayed are three
examples of digital twin–derived simulations. Abbreviation: ALD, alcohol-associated liver disease.
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uncharted territory. Securing patient safeguards and
Federal Drug Administration (FDA) approvals for digital
technologies are imperative steps for the responsible
implementation of AI in ALD research.[58] There are
further legal and commercial implications of using
increasingly granular patient data that will mandate
robust legislation. For example, transparent data use
agreements that require patient consent can provide
clear information on how data will be used, stored, and
distributed.

In addition to ethical considerations, effective imple-
mentation of AI in ALD research requires addressing
technical challenges, such as data interoperability and
integration with existing health care systems. A multi-
stakeholder approach will help encourage innovation
while ensuring patient safety, privacy, and equitable
access to AI-enabled health care services.[58,59]

PROMISE OF AI IN ALD

It is evident that machine-learning approaches are
poised to become the standard for statistical
approaches in clinical research, ALD included. Digital
technologies are gaining traction as well in their
adjunctive use to face-to-face clinical care. High-level
machine intelligence is evolving with considerable
speed, such that reviews like this one can capture only
momentary snapshots of its progress. A significant
benefit to both AI and digital technologies has been their
ability to foster creativity, enabling the discovery of
unconventional approaches and unexpected tools to
solve health care problems. We will next discuss AI
domains that will be extremely beneficial to, but remain
unexplored, in ALD. We make predictions based on
knowledge of how AI is being used within other medical
subspecialties as well as in sectors outside of medicine.

POPULATION-LEVEL RESEARCH IN
AUD-ALD

ALD stands apart from infectious causes of liver
disease like hepatitis B and C as a noncommunicable
etiology. However, as a leading preventable contributor
to death, there is utility in understanding geographic
areas and populations that are more at risk, whether
due to proximity of alcohol outlets, targeted advertising,
or long-standing structural and systematic discrimina-
tions predisposing to higher rates of substance use and
addiction. Similar to how it was used for COVID-19
tracking, wastewater-based epidemiology[60,61] is a
unique strategy to uncover community trends and
hotspots in alcohol consumption. Population-level
trends related to AUD-ALD can also be ascertained
through the mining of social media. In the addiction
literature, for instance, language phenotypes from

social media posts have been able to predict short-
term outcomes of abstinence, relapse, and treatment
dropout.[62] As AI-based linguistic capabilities become
more sophisticated, so could the automation of assess-
ment and intervention tools with social media as the
primary input data. Together, real-time population-level
data from sources such as wastewater-based
epidemiology or social media could inspire local, state,
and national health alcohol policy changes guided and
monitored through AI-powered platforms.

LARGE LANGUAGE MODELS

Large language models (LLMs), exemplified by models
like OpenAI’s Chat Generative Pre-trained Transformer
(ChatGPT), demonstrate remarkable aptitude for gener-
ating creative content. Their proficiency extends to natural
language processing, a crucial aspect in the extraction of
structured data elements from unstructured sources like
clinical notes, radiology reports, or pathology images.

Traditional research methods using national data-
bases or probing electronic health records frequently
encounter the limitations of diagnostic coding systems,
such as the ICD-9 and ICD-10. This challenge is no
different in ALD, particularly in AH.[63] LLMs could also
help ALD research contend with nomenclature changes
and terminology inconsistencies.

Ge et al have developed a liver-disease–specific
LLM called “LiVersa” that was trained on clinical
practice guidelines from the American Association for
the Study of Liver Diseases (AASLD) pertaining to
HCC.[64] An analogous LLM for ALD could help with
information retrieval, summarizing research findings,
and guidelines for clinicians.

For patients, LLMs can become personal assistants,
providing a user-friendly dynamic interface that can
answer questions about a diagnosis of ALD or transform
into a virtual health coach/addiction counselor.

Despite their impressive abilities, LLMs have present
limitations like “parroting,” where they generate con-
vincing text without genuine comprehension, and
“hallucinations,” producing incorrect or nonsensical
output. LLMs created to help educate or instruct
patients with AUD-ALD will need to be adequately
tested and verified before widespread use. Inaccurate
outputs with LLMs in medical use could have detrimen-
tal legal and clinical consequences.

VIRTUAL REALITY

Virtual reality (VR) is a technology that immerses users in
a simulated environment. VR itself is an entity for digital
therapeutics. One type of VR therapy is through cue-
exposure. Patients are repeatedly exposed to disease-
relevant, realistic life scenes with multiple sensory inputs
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with the goal of conditioning a psychophysiological
response. A recent study looked into the ability of VR
Cue-exposure therapy to reduce alcohol cravings in
patients with AUD.[5] The intervention was VR-Cue-
exposure therapy in the form of a video that simulated a
scenario where close friends were drinking alcohol for a
celebratory occasion. Patients watched the video while
receiving olfactory stimulation with real alcohol and
while a biofeedback device collected vital signs and
skin conductance information. With repeated VR-
Cue-exposure therapy sessions, the study group ulti-
mately had fewer cravings and physiological responses
to alcohol.[65] Further applications of VR into ALD may
offer innovative avenues for patient education, behavior
modification, and therapeutic interventions.

DIGITAL TWIN

The concept of a “digital twin,” though remaining an
abstract idea in medicine, has found practical applica-
tion in other industries like aerospace. In health care, a
digital twin involves constructing a virtual replica of an
individual patient by vertically integrating their available
lifestyle, clinical, and laboratory data.[57] Through
horizontal integration, digital twins from thousands to
millions of patients with similar disease processes and
demographics can be analyzed collectively. AI algo-
rithms can continuously update and simulate a digital
twin’s health status based on personal and comparative
factors, potentially offering highly individualized insights
into disease progression and/or risk assessments.[66,67]

In ALD, digital twins could facilitate the recalibration of
individual risk profiles, knowing that underlying AUD can
be a relapsing-remitting process. For example, in a
patient achieving sustained alcohol remission, the digital
twin–powered simulation could accurately predict rec-
ompensation of liver disease. A separate patient’s digital
twin may alert a higher risk of pending alcohol relapse
using passive sensor data that is then used to deploy
timely interventions, which may involve communication
with the hepatology health care team or engagement of
digital technology like a virtual health coach (Figure 2).

Digital twin represents the cumulative supremacy of
multimodal data integration, digital technologies, and AI-
powered analytics for real-time, continuous, high-preci-
sion outputs (Figure 2). Yet, the digital twin represents
still one part of a larger digital medical revolution that
includes digital clinical trials, personalized chatbots, and
the conceivable digitization of the patient experience
from home to hospital.

CONCLUSIONS

In this review, we summarized the current landscape of
the application of AI and digital technologies for the care

of patients with ALD. Early work in this space has used
AI methodologies for single or mixed streams of data.
As the field progresses, we anticipate multimodal data
integration with the application of advanced computing
technologies will improve the diagnosis, prediction, and
management of ALD and AUD. While AI methodologies
—spanning advanced machine-learning applications,
LLMs, and digital therapeutics—hold tremendous
promise, their successful implementation will require
addressing biases, technical challenges, regulatory
frameworks, and ensuring ethical data practices.
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