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Prediction of stress and drug craving ninety minutes in the
future with passively collected GPS data
David H. Epstein1✉, Matthew Tyburski1, William J. Kowalczyk1, Albert J. Burgess-Hull1, Karran A. Phillips1, Brenda L. Curtis1 and
Kenzie L. Preston1

Just-in-time adaptive interventions (JITAIs), typically smartphone apps, learn to deliver therapeutic content when users need it. The
challenge is to “push” content at algorithmically chosen moments without making users trigger it with effortful input. We trained a
randomForest algorithm to predict heroin craving, cocaine craving, or stress (reported via smartphone app 3x/day) 90 min into the
future, using 16 weeks of field data from 189 outpatients being treated for opioid-use disorder. We used only one form of
continuous input (along with person-level demographic data), collected passively: an indicator of environmental exposures along
the past 5 h of movement, as assessed by GPS. Our models achieved excellent overall accuracy—as high as 0.93 by the end of
16 weeks of tailoring—but this was driven mostly by correct predictions of absence. For predictions of presence, “believability”
(positive predictive value, PPV) usually peaked in the high 0.70s toward the end of the 16 weeks. When the prediction target was
more rare, PPV was lower. Our findings complement those of other investigators who use machine learning with more broadly
based “digital phenotyping” inputs to predict or detect mental and behavioral events. When target events are comparatively subtle,
like stress or drug craving, accurate detection or prediction probably needs effortful input from users, not passive monitoring alone.
We discuss ways in which accuracy is difficult to achieve or even assess, and warn that high overall accuracy (including high
specificity) can mask the abundance of false alarms that low PPV reveals.
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INTRODUCTION
“Digital medicine” has many meanings, but one of the most
exciting is the prospect of treating chronic disorders with just-in-
time adaptive interventions (JITAIs).1,2 JITAIs, which currently exist
in various stages of development and validation, are mobile
treatments that learn to deliver therapeutic content exactly when
patients need it. This is typically done via smartphone app. Among
developers of JITAI apps, one major ambition is to “push” content
to users at algorithmically chosen moments rather than relying on
patients to “pull” the content themselves. This could be especially
important for decisional events that are characterized by
ambivalence, such as cravings and lapses in substance-use
disorders (SUDs):3 at a watershed moment, an app-based
interruption might help people make healthy decisions they
would be less likely to make on their own.
The first hurdle to develop such a JITAI app is to give it the

inputs it needs for prediction. Ideally, inputs would be collected by
passive ambulatory monitoring, putting no burden on patients.
Recent approaches to this problem have used digital phenotyp-
ing, a set of strategies that encompasses logging almost every-
thing that can be sensed by a smartphone’s operating system.4

(We list many published examples in the “Discussion” section). Our
research group, however, embarked on passive ambulatory
monitoring in 2008, several years before smartphones approached
their current levels of flexibility and ubiquity. We initially
combined palmtop-computer ecological momentary assessment
(EMA) with passive sensing of geolocation via stand-alone GPS
loggers, a combination we call geographical momentary assess-
ment (GMA).5 We developed GMA in the context of an NIH-wide
initiative to develop methods for measuring environmental
exposures;6 our main goal in that context was to acquire

generalizable, population-level knowledge about the momentary
dynamics of relationships between environment and behavior.7

Accordingly, we analyzed our GPS data not in terms of literal
geospatial coordinates, but in terms of how places scored on
observer-rated scales of psychologically relevant indices such as
visible signs of poverty, violence, and drug activity.8

In our pilot GMA study, with 27 outpatients undergoing
methadone maintenance for opioid-use disorder (OUD), we found
that craving, stress, and mood were predicted by the past 5 h of
exposure to visible signs of environmental disorder along a GPS-
derived track.5 (The direction of the relationship was not always as
we expected it to be, but, although that finding is heuristically
important, it is not relevant for case-by-case prediction, so we do
not discuss it further here). For those analyses, we used traditional
inferential statistics—multilevel models that assess overall asso-
ciations in whole samples and subgroups. The generalizable
conclusions that can be drawn from inferential statistics do not
explicitly quantify the proportion of people for whom they are not
true9 or the number of moments at which they are not true.
Explicit quantification of inaccuracy is the province of classification
models, and the most accurate models are often so complex that
they cannot contribute to generalizable knowledge.10 Investiga-
tors sometimes have to choose between explaining behavior (via
the parsimony of inferential statistics) and correctly predicting it
(via the multifactorial, interaction-laden models that typify
machine learning).11 Accurate prediction is our goal in this paper.
For our machine-learning models, we collected GMA data from

a new cohort of almost 200 outpatients with OUD, each assessed
for up to 16 weeks during maintenance on methadone or
buprenorphine at our clinic. All participants completed their data
collection before we trained and tested the models; we used a
high-performance server cluster (NIH Biowulf), accessed via
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desktop computer, to simulate real-time runs of the models rather
than running models live as participants carried devices. In each
model, the sole time-varying input was an indicator of environ-
mental exposures along the past 5 h of GPS track. (See the
“Methods” section for details on our environmental-exposure
measure). The models also included person-level inputs reflecting
demographics and SUD history. The output was a prediction of the
probability of either heroin craving, cocaine craving, or stress (all
reported in randomly prompted EMA entries on a smartphone) at
any point in the next 90 min.
We should note, for readers unfamiliar with OUD and its

treatment, that maintenance on methadone or buprenorphine
reliably decreases illicit drug use and craving,12–14 but often does
not eliminate them.15,16 Thus, it is both possible and clinically
important to study craving in the context of those treatments, as
we do here. We focused on craving for cocaine as well as illicit
opioids because, of the nonopioid drugs commonly used by
people with OUD during treatment, cocaine is especially common
and problematic.17,18

In reporting our results, we emphasize not just overall accuracy,
but also the components of accuracy: specificity, sensitivity, and—
especially—positive predictive value (PPV) and negative predictive
value (NPV). PPV and NPV indicate the trustworthiness of a
prediction of presence or absence. This is the crux of how a JITAI
will be experienced by users in real time: not sensitivity (“what
percentage of my cravings will be detected?”) or specificity (“of
the noncraving moments that constitute the bulk of my time,
what percentage will be undisturbed by false alarms?”), but NPV
(“does the app’s silence right now mean I’m not at risk of
craving?”) and PPV (“is this craving alert necessary right now?”).
For low-prevalence events, high specificity can mask very low
PPV.19 Therefore, we began our analyses by characterizing the
prevalence of our prediction targets.

RESULTS
Prevalence per person
Figure 1 shows each participant’s prevalence for each of the three
dependent variables: heroin craving, cocaine craving, and stress.
In general, prevalences were low; many participants reported no
occurrences. Columns 1, 3, and 5 show the data in raw form;
columns 2, 4, and 6 smooth the data by using a cumulative
function—i.e., any occurrence of the variable up to that time
point. Raw prevalence showed substantial variability both
between participants and over time. These fluctuations in
prevalence complicate the use of traditional accuracy metrics,
most of which are affected by prevalence. The use of a cumulative
function helps stabilize between-week variability with each
participant. Therefore, we used the cumulative-function data for
the test of model accuracy that follow.

Accuracy for each person by week, overall
Figure 2a–c shows accuracy (along with prevalence) by week,
averaged across all participants.
For heroin craving (Fig. 2a), mean weekly prevalence started at

0.19 and decreased to ~0.11. Mean overall prediction accuracy
started at 0.80 and increased to 0.93—but, as is common for low-
prevalence prediction targets, the high overall accuracy was
driven mostly by the relative ease of correctly predicting absence.
This was reflected in high specificity (starting at 0.99, decreasing to
0.90) and high NPV, starting at 0.81, increasing to 0.93. The more
challenging task of correctly predicting presence is reflected by
sensitivity, which started at 0.00 in the “off the shelf” model at
week 0, increased to 0.12 at week 1 with the inclusion of some
individual tailoring data, and required all 16 weeks to become
even as high as 0.47. Like sensitivity, mean PPV was 0.00 without

tailoring, but unlike sensitivity, it quickly increased, jumping to
0.47 with just one week of tailoring, and reaching 0.56 at week 8.
For cocaine craving (Fig. 2b), mean weekly prevalence was even

lower than that of heroin craving, starting at 0.10 and decreasing
to 0.06. The accuracy results, accordingly, follow the same pattern
as those for prediction of heroin craving, with an even greater
difference between specificity (almost perfect) and sensitivity
(never higher than 0.15). PPV did reach 0.93 and 0.79 for the final
two weeks of prediction.
For stress (Fig. 2c), mean weekly prevalence was higher than

that of craving; it started at 0.38 and decreased only slightly, to
0.33. This higher prevalence reduced the accuracy-inflating
influence of high specificity: specificity started at 1.00 and quickly
decreased to 0.87; overall accuracy started at 0.62 and increased
to 0.80. Sensitivity started at 0.00, quickly increased to 0.09, and
reached 0.33. PPV (after being undefined for the first week
because there were no predictions of presence) started at 0.56
and slowly increased to 0.76.
For all three measures, the aggregated statistics in Fig. 2

suggest: (1) a non-tailored, “off the shelf” model (the model used
at week 0) did not predict craving or stress; (2) as is typical for low-
frequency prediction targets, overall accuracy was inflated by the
influence of high specificity; (3) even so, mean PPV approached
acceptable levels after just 1–8 weeks of tailoring.
Figure 3a–c shows the accuracy (along with prevalence) data

from Fig. 2a–c, person by person. For each of three prediction
targets, the pattern was similar: accuracy was higher (closer to
yellow) when participants were near the extremes, with either very
low prevalence (driving up specificity and NPV) or very high
prevalence (driving up sensitivity and PPV). For participants in
middle ranges of prevalence, accuracy was lower (closer to purple
or black).
Also clear in the figure was that PPV was often not calculable for

a given participant in a given week, because the model that week
included no predictions of presence for the rest of the
participant’s data. Similarly, sensitivity was sometimes not
calculable because the target event did not occur. Thus, even
though it is important to consider accuracy at the levels of
individuals and moments, the metrics used to express accuracy do
not always lend themselves to the purpose. In the analyses we
report in the next sections, on group differences in accuracy, we
return to the aggregated level.

Accuracy for each person by week, by sex
Although our aim was to develop individualized, temporally
specific models, we also wanted to ensure that the models would
pass basic checks for differential performance across demographic
categories such as sex and race. We have previously published
group-level findings, some from a cohort overlapping the current
cohort, that showed small but detectable differences in drug-use
behaviors as a function of sex20,21 or race22). Differences in
prediction accuracy by sex or race, however, would be a sign that
our approach to prediction had unforeseen pitfalls.
Figure 4a–c shows mean accuracy (along with prevalence) by

week for women and men. There were no appreciable sex
differences in prevalence or in any of the accuracy measures for
heroin craving, cocaine craving, or stress. The median Cohen d value
was 0.075, with a range from 0.02 (95% CL −0.45, 0.53) (heroin-
craving PPV) to 0.18 (95% CL −0.11, 0.47) (heroin-craving specificity).

Accuracy for each person by week, by race
Figure 5a–c shows mean accuracy (along with prevalence) by
week for the two race categories in the sample: African Americans
and European Americans. African Americans reported lower rates
of heroin craving (d= 0.56, 95% CL 0.27, 0.87) and stress (d= 0.46,
95% CL 0.16, 0.75), and tended to report lower rates of cocaine
craving (d= 0.18, 95% CL −0.11, 0.47). Overall accuracy was
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higher in African Americans than European Americans for
prediction of heroin craving and stress; this difference in overall
accuracy was driven by greater specificity and NPV and was offset
by lower sensitivity and PPV.

Accuracy for each person by week: differences among prevalence
clusters
Figures 6a–c and 7a–c show the empirically derived prevalence
clusters for heroin craving, cocaine craving, and stress. We labeled
the clusters (1) low prevalence, (2) medium-decreasing preva-
lence, (3) medium-increasing prevalence, and (4) high prevalence.
Figure 8a–c shows mean accuracy (and, again, prevalence) by

week for the four trajectory clusters. As prevalence increased,
overall accuracy for each of the three prediction targets
decreased. Like the difference across racial groups, this greater
overall accuracy at low prevalence was driven by greater
specificity and NPV and was offset by lower sensitivity and PPV.

Differences by prevalence cluster appeared larger than
differences by race. For example, the linear decrease in PPV
for heroin-craving prediction across clusters (4 > 3 > 2 > 1) had a
Cohen d of 3.50 (95% CL 2.64, 4.63). The corresponding effect
sizes for other PPVs and NPVs ranged from 1.26 (95% CL 0.88,
1.65) (cocaine PPV: 4 > 3 > 2 > 1) to 4.15 (95% CL 3.51, 4.84)
(stress NPV: 1 > 2 > 3 > 4).
In 15 additional multilevel models (one for each accuracy

measure), we tested race and prevalence cluster simultaneously as
predictors of accuracy. In every model, simultaneous inclusion of
the two predictors greatly reduced the main effect of race (usually
to less than half its original size, always with loss of its statistical
significance) but not the main effect of prevalence cluster (which
always remained statistically significant). Thus, the initial appear-
ance of greater prediction accuracy for African Americans than for
European Americans seems to be best viewed as an artifact of
differences in the prevalence of the prediction targets.

Fig. 1 Prevalence of heroin craving, cocaine craving, and stress, for each participant. Data are shown as heat maps for the raw prevalences
(columns 1, 3, and 5) and cumulative functions (columns 2, 4, and 6). Each of 189 participants is represented by one row on the y-axis, and
each of 16 successive weeks (numbered 0–15) of 3x/day random-prompt entries is represented on the x-axis. The participants are sorted first
by their duration in the study (gray indicates no data), then by their prevalence of the dependent variable. Cumulative functions smooth the
data by showing a running tally of occurrences of the target variable up to that time point.
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DISCUSSION
Using only one form of continuous passive input (along with
person-level demographic data), our machine-learning models
predicted the occurrence of drug craving or stress 90 min into the
future with excellent overall accuracy—as high as 0.93 by the end
of 16 weeks—but this high overall accuracy was driven mostly by
correct predictions of absence. For any given prediction of
presence, “believability” (expressed as PPV) was lower, usually
peaking in the high 0.70s toward the end of the 16 weeks. A PPV
in the high 0.70s is often taken to be a successful result in the
realm of JITAI development, but we have to temper our
conclusions by noting that this was only our average PPV; it was
lower when participants experienced the target event less
frequently.
Our findings complement a body of published work by other

investigators who have used machine learning with GPS-based,
EMA-based, or sensor-based inputs to predict drug use,23

smoking,24,25 exercising,26 diet-related behaviors,27–30 and mood
changes,31–35 on time scales ranging from hours to days. A closely
related body of work used similar inputs for automated detection
of current (not future) cigarette cravings,36 food cravings,37

stress,38–41 drinking,42 manic episodes,43,44 and mood.45–50 Pre-
diction or detection accuracy in these studies was greatest for
targets that had clear, enduring signatures, such as the transition
from a depressive state to a manic state, which, with digital

phenotyping, was detected with sensitivity and PPV of 0.97 on a
whole-day time frame (that is, detection was counted as correct if
the model flagged a transition before a whole day had elapsed).44

More elusive, however, was the detection of mental states such as
stress, for which sensitivity and PPV were often below 0.50,41,50

and the prediction of future states or events, for which sensitivity,
specificity, and PPV (when PPV was reported) tended to be in the
0.70s at best, occasionally reaching the 0.80s.23,25,27,30,35,40 These
are mostly averages across all participants in a given study; many
of the published reports do not provide information on how
accuracy varied across people or time. In pointing that out, we do
not mean to diminish what was accomplished in the cited studies;
most of them are impressive demonstrations of at least partial
success in a challenging area. Our own results should be viewed in
that context.
We closely examined how the accuracy of our models differed

from person to person—and we checked for differences among
groups of people. Our goals here can be expressed in terms of the
difference between precision medicine and personalized medi-
cine. The term precision medicine has largely superseded the term
personalized medicine; the change was intended to clarify that
treatment matching would occur at the level of whole classes of
patients, e.g., patients with some specific allele.51 But personalized
medicine—in which randomization, statistical assessment of
outcome, and treatment selection occur literally in one person

Fig. 2 Prediction accuracy (and prediction-target prevalence) per person per week, across all participants. a Heroin craving, b cocaine
craving, and c stress. For some measures, not all participants could be included: PPV could not be calculated when there was no prediction of
presence, and sensitivity could not be calculated when the target event did not occur. Within each panel, 6 lines of data show the following.
(1) A summary of the cumulative-prevalence data from Fig. 1, N= 187. (2) Overall accuracy, N= 187. (3) Sensitivity, N= 160 (heroin), 130
(cocaine), 181 (stress). (4) Specificity, N= 186 (heroin), 186 (cocaine), 184 (stress). (5) Positive predictive value (PPV), N= 68 (heroin), 149
(cocaine), 118 (stress). (6) Negative predictive value (NPV), N= 187. The accuracy statistics in lines 2–6, though shown as time series, do not
literally display weekly accuracy for any one participant moving through time. Each time point represents a separate scenario. Run 0 shows
accuracy when the model is run “off the shelf” for each participant, using other participants’ data to predict all 16 weeks of responses (in 90-min
segments) for that participant. Run 1 shows accuracy when the model additionally includes one week of data from the target participant,
predicting his or her final 15 weeks of responses (in 90-min segments). Run 2 shows accuracy when the model includes two weeks of data from
the target participant, predicting his or her final 14 weeks of responses (in 90-min segments)—and so on.
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Fig. 4 Prediction accuracy (and prediction-target prevalence) per person per week, by sex. a Heroin craving, b cocaine craving, and
c stress. There were 141 men and 48 women. Details as in Fig. 2.

Fig. 3 Prediction accuracy (and prediction-target prevalence) per person per week, for each participant. These heat maps recapitulate
prevalence (column 1) and show model accuracy per person per week (column 2, overall accuracy; 3, sensitivity; 4, specificity; 5, positive
predictive value; 6, negative predictive value). In columns 2–6, the color scheme is as follows. White: missing data. Gray: accuracy not
calculable due to non-occurrence of event. Purple/black: low accuracy: Orange and yellow: high accuracy.
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at a time52–54—is very much the realm in which JITAI validation
should occur. When we tested for difference in prediction
accuracy as a function of sex and race, we were not attempting
a crude approximation of precision medicine; we were checking
for possible weaknesses in our method for personalized medicine.
Nonetheless, group-level indices might have a place in the

practical deployment of a JITAI app. In the models we tested here,
off-the-shelf accuracy for each new participant was exceedingly
low. Some group-level information about a new participant (other
than the group-level information we used) could be integrated
into the first few weeks of model runs to provide a computational
“warm start”. Based on our current findings, we are examining
ways to determine each new participant’s trajectory cluster (low
prevalence, high prevalence, etc.) as early as possible, thereby, we
hope, making our momentary predictions more accurate more
quickly. For people in different prevalence clusters, emphasis
needs to be on different aspects of accuracy: high prevalence is a
challenge to NPV and specificity; low prevalence is a challenge to
PPV and sensitivity. JITAI developers should focus on the indices
that are most difficult to achieve at their observed level of target
prevalence.
One limitation of our method—that GPS track data were the

only time-varying input to our models—is a limitation we imposed
on ourselves purposefully. GPS logging imposes no burden of
effort on participants and may raise fewer privacy concerns than
digital phenotyping (because digital phenotyping entails logging
of a broad range of information, usually including GPS). It is not
surprising, however, that GPS tracks alone were insufficient for our
predictive purposes; if anything, it is surprising that they worked
as well as they did. Our next steps will include developing models

that include some effortful input in the form of prior EMA entries;
we will attempt to determine how dense or sparse this input must
be to improve prediction accuracy. We are also planning to test
some digital phenotyping and physiological monitoring.
Another limitation of the methods we reported here is that we

did not systematically compare different types of machine
learning (such as support vector machines or neural nets). In
preliminary work with a similar data set, we found that
randomForest models tended to produce clearer spikes of
predicted risk than support vector machines. This says nothing
about their respective accuracies, but it suggests that random-
Forest output would be more actionable for a JITAI. Mostly,
however, we chose to use randomForest because it ran well with
minimal adjustment to its default settings. We see this as strongly
justifiable, given that we ran thousands of individual models. We
focused on examining the performance of a single model setup
over time.
In doing so, we chose to predict mental events such as craving

and stress, rather than actual instances of drug use. We made that
choice because craving and stress were more prevalent than use.
Our own EMA studies have shown that lapses to drug use during
treatment are preceded, on a scale of hours, by increases in
craving and by changes in mood.55,56 Stress is related to lapses
more complexly, but is often associated with them.57 Accurate
prediction of any of those—drug craving, mood changes, or stress
—is likely to help prevent lapses and would also be of inherent
clinical value.
Having just referred to “accurate prediction,” we should

acknowledge that we do not know what qualifies as sufficiently
accurate for use in a JITAI app. We cannot state, for example, the

Fig. 5 Prediction accuracy (and prediction-target prevalence) per person per week, by race. a Heroin craving, b cocaine craving, and
c stress. There were 120 African-American (AfAm) participants and 66 European-American (EurAm) participants. Details as in Fig. 2.

D.H. Epstein et al.

6

npj Digital Medicine (2020)    26 Scripps Research Translational Institute



threshold at which PPV becomes so low (and the false-alarm rate
so high) that a patient will stop using the JITAI app. Most likely, it
will be a matter of user preference, addressable by letting patients
easily adjust the frequency with which content is pushed.
Further complexifying the issue, we should note that the

meaning of accuracy for momentary-level detection or prediction
is more elusive than it might seem. As we said when we reported
group-level results from our pilot study,5 mental events with
detectable physiological concomitants and important health
consequences may occur without subjective awareness;58,59 thus,
while self-report is an important check on detection accuracy, a
user “denial”might not always indicate a false alarm. Conversely, a
user “confirmation” might not always indicate a correct detection,
because algorithmically triggered feedback can make respondents
override their own self-knowledge and simply trust the machine’s
assessment (unless investigators take care not to phrase the
feedback in leading ways).60,61 Thus, accuracy is difficult not only
to achieve, but sometimes even to define, and testing it live in the
field (rather than on archival data, as we did here) can actually
complicate matters. Even so, live testing is an important next step.
Finally, it is important to recognize that detection/prediction

accuracy for a JITAI is a separate issue from the creation of the
content the JITAI should deliver. The matching of interventional
content to momentary situations is an active area of theory
development62–64 and requires specialized study designs.65 Our
research group is pursuing these two aims—prediction accuracy
and content development—on parallel tracks until we are
confident that we can combine them. Accuracy alone is a
daunting challenge, yet accuracy alone does not guarantee
benefit to patients. A validated JITAI should change clinically
relevant outcomes, either momentarily,65 in the long term,2 or

both, and that change should be greater than the change induced
via some placebo algorithm that triggers interventions at
random.60,61 The results we report here represent progress on
one of the several paths that may converge on that outcome.

METHODS
Study participants and treatment setting
At enrollment, participants were seeking treatment for opioid-use disorder
(OUD) at a treatment research clinic in Baltimore, MD. During screening,
participants completed the Addiction Severity Index (ASI)66 and the
Diagnostic Interview Schedule (DIS IV)67 and were given physical
examinations and psychological testing. The main inclusion criteria were:
age 18–75 years, physical dependence on opioids, and residence in
Baltimore City or one of the surrounding counties. The main exclusion
criteria were: history of any DSM-IV psychotic disorder or bipolar disorder;
current untreated Major Depressive Disorder; current physical dependence
on alcohol or sedative-hypnotics; cognitive impairment precluding
informed consent or valid self-report; conditions that preclude urine
collection; or medical conditions that would compromise research
participation.
After enrollment, participants began outpatient maintenance on

methadone or buprenorphine and weekly individual counseling at the
research site. Medications were administered in the clinic five to seven
times per week, with medications given to take at home on weekends and
major holidays. Urine drug screens were conducted two or three times
per week.
The study was approved by the NIDA Intramural Research Program’s

Institutional Review Board; all participants gave written informed consent.
The study was covered by a federal Certificate of Confidentiality, assuring
that data could not be subpoenaed. The study registration number in
ClinicalTrials.gov is NCT00787423. All analyses focus on data collected from

Fig. 6 Smoothed mean trajectories of heroin craving, cocaine craving, and stress in empirically derived clusters of participants. We
labeled the clusters (1) low prevalence, (2) medium-decreasing prevalence, (3) medium-increasing prevalence, and (4) high prevalence.
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189 outpatients who attended between 2009 and 2016; their demographic
data are shown in Table 1.

EMA data collection
After the first week of treatment, participants received a smartphone
programmed to emit three audible prompts per day at random times
during the participant’s typical waking hours. In each randomly prompted
entry, participants rated their current heroin craving, cocaine craving, and
stress. (Participants were also asked to initiate entries when they used
drugs or experienced stressful events,68 and prompted to make an entry at
the end of each day,69 but those data were not used in the present
analyses). Participants carried the smartphones for up to 16 weeks and
were paid $10–30 each week for completing at least 23 out of 28 weekly
prompts. After two consecutive weeks of not meeting completion criteria,
participants were not allowed to continue the study and were assisted with
transfer into community-based addiction treatment.
The analyses presented here focus on responses to randomly prompted

ratings of heroin craving, cocaine craving, and stress, each of which was
rated 1–5 (anchored “not at all” to “extremely”) by participants. Because
the data consisted mostly of “not at all” responses, forming an L-shaped
distribution,70 we dichotomized them: ratings of 1 were recoded as 0;
ratings of 2–5 were recoded as 1. In analyses to be reported elsewhere, we
take other approaches to the problem of the L-shaped distribution, but
dichotomizing none versus any is one reasonable approach when the goal
is to make a dichotomous decision (specifically, to do nothing or to trigger
a momentary alert/intervention).

GPS data collection and pre-processing
During the EMA data collection period, participants carried small, no-
display GPS loggers (BT-Q1000X, Qstarz International), which recorded
geolocation every 20m or every 15min.71 The GPS loggers had internal
Quality Assurance (QA) software that collects and computes information
on the number of satellites, horizontal dilution of precision (HDOP), and
position dilution of precision (PDOP). We identified and removed GPS
points with signal error following methodology we have previously

described.5 We processed the remaining GPS data to calculate speed and
distance before and after each GPS point. We then used a speed filter (the
R package argosFilter),72 which removes GPS points in each track if an
adjacent point indicates an implausibly high velocity (≥ 31.3 m/s);73 the
filter works iteratively until no such points remain. After running the speed
filter, we recalculated values for speed and distance between GPS points.

Tax-value data as a measure of environmental exposures
To operationalize environmental exposure, we used property-tax data from
Maryland’s Department of Planning (http://planning.maryland.gov/Pages/
OurProducts/PropertyMapProducts/Property-Map-Products.aspx), covering
Baltimore City and County. In our prior GMA work, we had used an
observer-rated measure of visible signs of disorder and poverty.8 This
measure had been developed exclusively for use in cities; therefore,
whenever a participant’s tracks left city limits, we had missing data. To
obtain complete coverage and make all our track data usable, we switched
to the use of tax-value data. We reasoned that property-category type and
total estimated taxable value per parcel, taken together, would reflect
socioeconomic conditions in a “wall to wall” fashion across the state. We
mapped this in 30m × 30m pixels. The only type of land that has no
taxable value in the database is roads and sidewalks; we assigned value to
them by extending property values 50m into the street, using an inverse
distance model (IDM).

Linking EMA, GPS and tax-value data: preparation for machine
learning
For each GPS point collected for each participant, we extracted the
associated tax-value data and combined them into a single dataset. To
obtain evenly spaced time points for training and validation of our
machine-learning models, we aggregated the unevenly spaced GPS data
into 30-min bins.5

For each EMA entry, we inserted the time stamp and participant
identifier into the GPS/tax dataset, creating sequences of environmental-
exposure information going back 24 h (1440min) in 30-min bins. Missing
GPS data from each 24-h sequence were replaced with the most recent

Fig. 7 Individual participants’ trajectories of prevalence for heroin craving, cocaine craving, and stress, by cluster. The clusters are the
same as those in Fig. 6.
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prior data; when that was done, calculations of time and distance between
GPS points were updated accordingly. When participants were outside
Baltimore City and County, the exposure data were coded as missing. If this
happened in an entire 30-min bin, the 30-min bin was coded as missing.

Model development and testing
We developed our models with the intent to: (a) simulate real-time data
collection as it would occur with a patient undergoing mobile treatment,
and (b) test whether there was an optimal or necessary duration of data
collection for each new patient before our machine-learning models could
predict the patient’s cravings or stress accurately enough to give useful
alerts.
We used the randomForest algorithm, a machine-learning method that

aims for case-by-case accuracy rather than explanatory clarity.11 Each
model was calibrated with 200 trees, and the number of variables
randomly sampled at each split was set to one third of the total
candidates.
Our models used geotagged tax-value data as the only time-varying

predictor, simulating a zero-burden form of assessment. Five hours of
those data went into each prediction; we chose that time frame because it
showed the strongest relationships with current craving and stress in our
pilot data.5 Person-level predictors in the models were: sex; age; race
(African American or European American); Hispanic ethnicity; education
(high-school graduate vs. not); years of education; marital status;
professional training (any vs. none); current employment (any vs. none);
days of using heroin, other opioids, or cocaine in the 30 days before
enrollment; lifetime years of use of heroin, other opioids, or cocaine; and
typical route of administration of each drug. Race and ethnicity were self-
reported by participants.
The output of each model was the occurrence or nonoccurrence of the

target event (heroin craving, cocaine craving, or stress) at any time in the
next 90min (i.e., a single prediction of presence if the model projected that
the target event would occur in any of the next three 30-min bins, or a
single prediction of absence if not).

We first tested accuracy for a model that was run as if “taken off the
shelf” at week 0 for each participant, using other participants’ data to
predict all 16 weeks of responses (in 90-min segments) for that participant.
We used a “leave-one-out”11 cross-validation approach, with a training
database of 188 participants used to make predictions for the held-out
participant. We implemented this modeling scenario training on each of
the 189 participants, resulting in 189 models trained and validated at
Week 0.
We next tested whether model accuracy would increase with greater

tailoring, week by week. Thus, our models for Week 1 assessed accuracy
with the inclusion of one week of data from the target participant,
predicting his or her final 15 weeks of responses (in 90-min segments). Our
models for Week 2 assessed accuracy with the inclusion of two weeks of
data from the target participant, predicting his or her final 14 weeks of
responses (in 90-min segments)—and so on. We continued this through
week 15, when we were left with only week 16 to predict. Thus, there were
up to 16 model runs for each of the 189 participants.

Accuracy statistics
We used the R package epiR74 to summarize prevalence of the prediction
target and to calculate overall accuracy and its components (of which we
report sensitivity, specificity, PPV, and NPV). We calculated model
performance per person per week, first aggregated across the whole
sample, then broken down by the basic demographic variables sex
and race.

Inferential statistics on person-level correlates of accuracy
To assess whether accuracy differed by sex or race, we used random-
intercept multilevel models (SAS Proc Mixed) in which the predictors were
sex (or race), week, and the interaction of the two, and the dependent
variable was the accuracy measure (total accuracy, sensitivity, specificity,
PPV, or NPV). Multilevel models accommodate incomplete repeated-
measures data without requiring imputation of missing data points. The

Fig. 8 Prediction accuracy (and prediction-target prevalence) per person per week, by cluster. a Heroin craving, b cocaine craving, and
c stress. Details as in Fig. 2. For measures of accuracy, the main effect of cluster is always significant, and, in Tukey pairwise comparisons, nearly
all pairs of clusters differ from each other.
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resultant F tests can be used to calculate effect sizes and confidence
intervals.75

We used similar mixed models to test how prediction accuracy was
affected by the prevalence of the prediction targets. To operationalize
prevalence as a person-level predictor, we fit latent-class growth models
(LCGM),76 clustering participants by their trajectories of week-by-week
prevalence for heroin craving, cocaine craving, and stress. We fit those
models with the R package lcmm,77 using the BIC and fit between
predicted values and observed values to select the final LCGM. In each
case, the best-fitting solution consisted of four clusters, which we named
low prevalence, medium-decreasing prevalence, medium-increasing pre-
valence, high prevalence. We used cluster as a predictor in another set of

multilevel models, again using the resultant F tests to calculate effect sizes
and confidence intervals. Finally, because accuracy seemed to differ as a
function of both race and prevalence cluster, we ran models in which we
included both as predictors.
In all multilevel models, alpha was set at 0.05, two-tailed. Our main

interest, however, was not on null-hypothesis significance tests, but on
describing the extent and reliability of any person-level correlates of
prediction accuracy. Therefore, we report the results of these models only
as brief summaries of the resultant effect sizes and confidence intervals.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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