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Abstract

Objectives

The current study analyzes a large set of Twitter data from 1,384 US counties to determine

whether excessive alcohol consumption rates can be predicted by the words being posted

from each county.

Methods

Data from over 138 million county-level tweets were analyzed using predictive modeling, dif-

ferential language analysis, and mediating language analysis.

Results

Twitter language data captures cross-sectional patterns of excessive alcohol consumption

beyond that of sociodemographic factors (e.g. age, gender, race, income, education), and

can be used to accurately predict rates of excessive alcohol consumption. Additionally,

mediation analysis found that Twitter topics (e.g. ‘ready gettin leave’) can explain much of

the variance associated between socioeconomics and excessive alcohol consumption.

Conclusions

Twitter data can be used to predict public health concerns such as excessive drinking.

Using mediation analysis in conjunction with predictive modeling allows for a high portion of

the variance associated with socioeconomic status to be explained.
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Introduction

Excessive alcohol consumption, the third-leading preventable cause of death, is an important

risk factor for many chronic diseases and accounts for an estimated 87,798 deaths yearly in the

United States [1,2]. The 2014 National Survey on Drug Use and Health (NSDUH) reports that

60.9 million participants surveyed were binge drinkers (drinking five or more drinks on the

same occasion on at least one day in the past 30 days) and 16.3 million reported heavy alcohol

use (binge drinking on 5 or more of the past 30 days) [3]. Excessive (binge and heavy) alcohol

consumption is associated with serious social and health consequences (e.g., automobile acci-

dents, unintended injuries, cognitive problems, and suicide) [4]. The question of how best to

measure alcohol consumption patterns and excessive alcohol consumption dates back to at

least the 1920’s [5]. The three most prominent strategies include 1) asking participants to list

their recent alcohol consumption occasions; 2) asking participants to summarize their alcohol

consumption patterns; and 3) using alcohol sale and shipment data [6,7]. One challenge in

measuring excessive alcohol consumption is the difficulty in gathering survey data—which tra-

ditionally has relied on national phone surveys. Surveys are costly, time-consuming, and sus-

ceptible to participant recall bias, socially desirable responding, and the researcher

unintentionally biasing participant responses [8].

More flexible and significantly less expensive alternatives for population-level assessment

utilize big data analysis of online media language [9,10]. Online data sources provide a rela-

tively new resource for monitoring and understanding public health problems, including

heavy and excessive alcohol consumption. There are many advantages of using social media

data over traditional public health assessment tools. Social media data are real-time and can be

collected and analyzed quickly. Researchers can observe discussions between individuals in

their natural environment without the presence of the researcher. Additionally, individual

statements are made as they occur—thereby reducing the memory recall biases that are com-

mon with national cross-sectional surveys. Google search queries have been used to measure

trends in chronic disease risk, cancer screening, influenza incidence, new diagnoses of HIV

infection and interest in synthetic cannabinoids and cathinones [9,11–15]. Due to the magni-

tude of content produced online, researchers can also use sophisticated natural language analy-

sis methods to mine user-generated social media content to better understand health

outcomes and health behaviors. For example, Twitter data have been used to track influenza

symptoms, nicotine consumption, estimate alcohol sales volume, and measure depression, life

satisfaction, HIV prevalence, and heart disease mortality at the county level [10, 16–26]. The

large magnitude of user-generated social media content available allows researchers to use

sophisticated natural language analysis methods to better understand health behaviors and

outcomes. Natural language analysis has been used to detect poor healthcare quality; adverse

drug events, and mental health status [27–30]. Paul and Dredze [20] analyzed Twitter user

messages to measure different population public health characteristics. They applied the Ail-

ment Topic Aspect Model to these tweets and were able to automatically extract a variety of

public health data from tweets. Specifically, they were able to track illnesses over time (syndro-

mic surveillance), measure behavioral risk factors, examine illnesses by geographic region, and

analyze symptoms and medication usage. While these studies have demonstrated the power of

Twitter to examine many health behaviors at the county level, the platform has yet to be used

for predicting county level substance use and misuse patterns.

The purpose of this study was to leverage the power of Twitter communications to better

understand excessive alcohol consumption at the county level. More specifically, we asked: 1)

Are linguistic patterns on Twitter predictive of county-level excessive alcohol consumption? 2)

How does Twitter content compare with and mediate demographic and socio-economic
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variables for predicting county-level excessive alcohol consumption? and 3) What linguistic

patterns are most highly associated (both positively and negatively) with excessive alcohol con-

sumption at the county level?

Twitter is a free social media platform that allows millions of users to send and receive each

other’s “tweets” (i.e., short messages limited to 140 characters). We selected Twitter because of

its national appeal and easy availability. As of the end of 2015, Twitter had over 65 million

active monthly U.S. users and processed over 500 million “tweets” per day [31,32]. Since a sig-

nificant portion of Twitter data is location-tagged, we can examine county-level variations of

Twitter language with excessive alcohol consumption.

Methods

The study was reviewed and approved by the University of Pennsylvania IRB-8. The review

board found the study to be exempt due to not pertaining to human subjects research. Addi-

tionally, it should be noted that the authors do not have permission from Twitter to redistrib-

ute the tweets used in this study, though all tweets are publicly available via the Twitter

platform.

Data sources

We used data from the 1,384 U.S. counties and county equivalents (henceforth “counties”) for

which excess alcohol consumption rates, county-level socioeconomic and demographic vari-

ables, and at least 40,000 tweeted words were available.

Twitter data. A random 1% of Twitter data was collected between October 2011 and

December 2013, totaling 2.24 billion tweets using the TwitterMySQL Python package. This

package directly connects to the official Twitter Streaming API (application programming

interface) and allows users to download random Tweets, and associated information such as

date, retweet information, user profiles, etc., in real time. TwitterMySQL was developed inter-

nally and has since been made open source (available at github.com/dlatk). Using the geoloca-

tion methods described in Schwartz et al. [33], we used self-reported location information in

user profiles (from approximately 20% of tweets) and latitude/longitude coordinates (available

for approximately 2% of tweets) to map tweets to U.S. counties. This resulted in 138 million

county-mapped tweets across 3,146 counties. Limiting the analysis to counties for which at

least 40,000 words were available, a more stringent limit than that recommended by Schwartz

et al. [34] to insure an adequate sample of a county’s language, reduced this number to 1,667

counties.

Several steps were taken to extract features (i.e. independent variables) from the county

tweet data. First, we split tweets (i.e. sequences of letters) into words using a publicly available

tokenizer1 which was designed to capture typical language as well as other social media content

such as emoticons (e.g. “:)”, “<3”) and hashtags (e.g. “#weed”) as “words”. Word frequencies

were then summed at the county-level and used to find the relative frequencies of groups of

related words, known as “topics.” Specifically, we used a social media-based set of 2000 topics

derived from the MyPersonality Facebook data set (approximately 15 million posts) [33]. The

topics were automatically discovered using Latent Dirichlet Allocation (LDA), a probabilistic

technique [33]. This technique uses a generative model which assumes that each document (in

this case, Facebook message) contains a distribution of topics, which is in turn assumed to be a

distribution of words. The end result of LDA is a set of topics, with weights for each word

belonging to the topics, denoted as p(topic|word). Words that are weighted highly within the

same topic are those which have appeared in similar contexts. For example, the words research,

paper, and final were all weighted highly within one particular topic. The particular set of 2000

Twitter used to predict county excessive alcohol consumption rates
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topics which we use here were derived previously over social media [33] using the Mallet soft-

ware package which estimates the latent variable of the topic using Gibbs sampling [35,36].

When running Mallet, all hyperparameters were set to their default value except alpha, a prior

on the expected topics per document, was set to 3. This was chosen under the assumption that

Facebook messages contain fewer topics than standard documents, such as blog posts or news-

paper articles, where LDA was originally applied. These topics have previously been applied

successfully in capturing county life satisfaction and heart disease mortality from tweets [10,

21].

The probability of topic usage per county, P(topic|document), was derived using:

PðtopicjdocumentÞ ¼
X

tok2 topic

PðtopicjtokÞ � PðtokjdocumentÞ ð1Þ

where document represents a county in this case. Here P(tok|document) was estimated from

the relative frequency of tokens (words) in the county (as described above) and P(topic|tok),
the probability of a topic given the token, was derived though the LDA process. Thus, for each

of the 1,667 counties, scores for the 2000 pre-specified topics formed the independent variables

in our statistical analysis. The topic scores for each county as well as the topics themselves have

been open-sourced and are available at at www.wwbp.org/data.html.

Excess alcohol consumption data. The Behavioral Risk Factor Surveillance System

(BRFSS) is a population-based cross-sectional telephone and cell phone health survey of U.S.

adults, aged�18 years, conducted by state and territorial health departments in conjunction

with the Centers for Disease Control and Prevention. From the BRFSS (2006–2012), we

obtained the county-level prevalence of self-reported binge drinking and heavy drinking [37]

Excessive alcohol consumption was defined as having drunk more than two drinks per day on

average (for men) or more than one drink per day on average (for women) or having drunk 5

or more drinks during a single occasion (for men) or 4 or more drinks during a single occasion

(for women). Further limiting our set of counties to those with excessive alcohol consumption

scores reduced our county set to 1,431. Excessive alcohol consumption by county is presented

in Fig 1.

Fig 1. Excess alcohol consumption by county.

https://doi.org/10.1371/journal.pone.0194290.g001
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Demographic and socioeconomic data. We obtained percentages of female, foreign

born, African-American and Hispanic as well as age percentages (19 bins) from the U.S. Cen-

sus Bureau [38,39]. County-level measures of log income, percentage of married residents,

high school and college graduation rates, and unemployment were obtained from the Ameri-

can Community Survey [40]. Because income and education are highly correlated, we created

a composite county-level socioeconomic index (Fig 2) by averaging standardized log income

and standardized high school graduation rates. Such averaging often results in a stronger sin-

gle predictor [41]. Limiting our analysis to counties with income and education rates left 1,384

counties. The socioeconomic index then forms our starting point for mediation analysis—

using topics to understand the relationship between county socioeconomics and excessive

alcohol consumption.

Statistical methods

To explore the relationship between language and excessive alcohol consumption, we per-

formed 3 statistical analyses: (1) Predictive modeling, to quantify how well Twitter language

predicts excessive alcohol consumption, (2) Differential Language Analysis (DLA) to identify

which features on Twitter correlate with excessive alcohol consumption, and (3) Mediating
Language Analysis to reveal how language use mediates the relationship between socioeco-

nomics and excess alcohol consumption. The entire analytical pipeline (from feature extrac-

tion to modeling, DLA and mediation) used the Differential Language Analysis ToolKit

(DLATK) Python package which is available at github.com/dlatk [42]. While demographic

and socioeconomic variables may predict alcohol consumption, they do not explain why this is

the case. That is, we know that being white is associated with drinking more alcohol than

being black, but it is presumably something correlated with race that is the causal driver rather

than race itself. The Twitter topics that mediate the relation between demographics and alco-

hol consumption provide suggestions of that ‘lurking’ causal mechanism—of the many word

topics that correlate with demographics, only some also predict alcohol consumption.

Predictive modeling. Predictive models of county excessive alcohol consumption, with

and without socio-demographic controls, were created using well-established regularized

regression techniques from the field of machine learning [43]. Specifically, we used a pipeline

Fig 2. Socioeconomic index by county.

https://doi.org/10.1371/journal.pone.0194290.g002
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of feature selection, principal components analysis, and ridge regression [10]. During feature

selection we first removed all low variance features and then features that were not correlated

with excess drinking at a family-wise error rate alpha of 60. This preprocessing pipeline of fea-

ture selection and principal components analysis was used to avoid overfitting since our

model included more independent variables (2000 topic frequencies) than units of analysis

(1,384 counties). Therefore, we did not apply this pipeline to any model which did include the

topic features, i.e., models with only socio-demographic variables.

Across three sets of models, we varied the features X (i.e. independent variables) and con-

sidered excessive alcohol consumption as the dependent variable y. For all models using lin-

guistic features (2000 Facebook topics), we used the standard ridge regression equation:

b ¼ ðXTX þ lIÞXTy ð2Þ

where the regularization term λ was set to 1,000 and chosen via cross validation. For models

using only non-linguistic features (demographic and socioeconomic variables), we used the

standard ordinary least squares (OLS) linear regression equation:

y ¼ Xbþ � ð3Þ

For model 1, we used only the 2000 Twitter topics with a ridge regression (Eq 2). For model 2,

we used (a) demographics alone (percentage of female, African American, Hispanic, foreign

born and married residents as well as four age bins: 1–14, 15–29, 30–60 and 60+), (b) the

socioeconomic index alone, all socioeconomic variables (log income, high school and college

graduation rates, and unemployment), and (c) all non-language variables combined, all via

OLS linear regression (Eq 3). Finally, for model 3, we combined the demographic and socio-

economic variables with the Twitter language. In order to distinguish the small number of

socio-demographic variables from the 2000 language features we first regressed the socio-

demographic variables against excess drinking, via a OLS linear regression (Eq 3), and used

the residuals for building the models with the language features via ridge regression (Eq 2).

We measured prediction performance using the Pearson correlation between the model

predictions of excessive alcohol consumption and BRFSS reported rates. We used 10-fold

cross validation [43], in which counties were partitioned into 10 parts, or “folds”. A predictive

model was built by fitting the independent variables to the dependent variables over 9 of the 10

folds, and then evaluated by determining how well the model predicted the outcomes for the

remaining 10th fold. This procedure was repeated 10 times and the results were averaged

together to determine the overall prediction performance. Significance of differences between

models’ performance was compared using a paired t-test over the models’ error.

Differential language analysis. We used Differential Language Analysis (DLA) [20] to

identify language that characterizes excessive alcohol consumption. In DLA the topic variables

were individually correlated with excessive alcohol consumption and the socioeconomic index

using an ordinary least squares regression. The variables were first standardized and we fit lin-

ear regression, using OLS linear regression (Eq 2), for each topic with and without the inclu-

sion of the socioeconomic index as a covariate, to excessive alcohol consumption. The

coefficient associated with the topic variable is reported. Because we made multiple compari-

sons (2000 topics per outcome), we applied a Benjamini–Hochberg correction to the signifi-

cance threshold [44]. We note that while less stringent than Bonferroni correction,

Benjamini–Hochberg is justified under thoroughly rigorous statistical principles. Additionally,

if nothing is significant under Bonferroni then nothing will be significant under Benjamini–

Hochberg either.

Twitter used to predict county excessive alcohol consumption rates
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In order to visualize the resulting topic correlations, we include word clouds for the top

(highest correlation coefficient) significant results. These word clouds display the top 15 most

prevalent words within a topic sized according to their posterior likelihood.

Mediating language analysis. We examined the relations between the socioeconomic

index and excessive alcohol consumption as mediated by the Twitter topics. Here, we make no

assumptions as to which of the 2000 topics mediates the relation. Instead, we take a rigorous

big data approach and consider all 2000 Twitter topics as potential mediators, again correcting

for multiple hypothesis tests using Benjamini-Hochberg.

For each topic in our topic set we considered the mediating relations among the socioeco-

nomic index (as the independent variable), topic (as mediator), and excessive alcohol con-

sumption (as the dependent variable). Each mediation follows the recommended standard

three-step process [45]. First, we regressed socioeconomic index x with excessive alcohol con-

sumption y (path c) and socioeconomic index with the topic m (path a) via:

y ¼ cxþ b1 þ �1 ð4Þ

m ¼ ax þ b2 þ �2 ð5Þ

Then in a single multi-variate model, we regressed both the topic (the mediator m; path b) and

the socioeconomic index (the independent variable x; path c’) with excessive alcohol consump-

tion:

y ¼ c0x þ bmþ b3 þ �3 ð6Þ

to determine how much the topic mediates the relationship between SES and excessive alcohol

consumption. The effect size of the mediation is assessed as the reduction between the direct

relationship of SES with excessive alcohol consumption and the relationship once the topic is

taken into account, mediation size = c–c’. We test for significance, using a Sobel p [46]. Because

we repeated this analysis over a large number of mediators (2000 different topics), we applied

the Benjamini-Hochberg procedure to correct the p values for false discoveries.

Results

Direct correlations

Table 1 shows correlations between excessive alcohol consumption and the standard demo-

graphic (female, foreign born, African-American, Hispanic, and age percentages) and socio-

economic variables (log income, high school and college graduation rates, as well as log

income, percentage of married residents, and unemployment). Excessive alcohol consumption

was most positively correlated with having graduated high school, log income, and having

graduated college, while it was most negatively correlated with percentage of African Ameri-

cans, women, and unemployment. The final column contains all cross correlations for our

composite socioeconomic index, which besides correlating with its member variables, had the

strongest correlation with excessive alcohol consumption of any variable. The high correlation

between excess drinking and these variables (r = 0.05 to 0.49) suggest their use as a strong base-

line of structural controls to attempt to out-predict with our Twitter language features.

Prediction models

To test the hypothesis that Twitter language adds predictive values beyond standard socioeco-

nomic and demographic variables, we compare models built on (1) the language alone, (2)

demographics, (3) socioeconomics, as well as combinations of each All models were fit over

Twitter used to predict county excessive alcohol consumption rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0194290 April 4, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0194290


one portion of data and tested on a held-out portion using a 10-fold cross-validation proce-

dure as discussed in the methods under predictive modeling. Accuracy of each model is

reported in Table 2 as the Pearson Product-Moment Correlation Coefficient between the

BRFSS excess drinking variable and its prediction based on the given model over heldout test

data. According to a paired t-test on model error, accuracy was significantly greater for the

combined model (socioeconomic and demographic variables plus Twitter) than the model

built only on the socioeconomic and demographic variables alone (r = 0.54 to r = 0.69; t =

-9.35, p = 1x10-6).

Differential language analysis

To assess specific linguistic features as markers of community excess drinking, we found those

topics most highly correlated with excessive alcohol consumption as depicted in Fig 3. Since

we considered 2,000 total topics, a Benjamini-Hochberg procedure was applied to correct sig-

nificance tests for multiple hypotheses. Topics positively correlated with excessive alcohol con-

sumption included game, hockey, gold (r = 0.32), festival, jazz, film (r = 0.32), drinking, beer,

Table 1. Cross correlations (Pearson r) Between Excess Alcohol Consumption, Demographic and Socioeconomic Variables.

Percent

Female

Percent African

American

Percent

Hispanic

Percent

Foreign Born

Percent

Married

Log

Income

Unem-

ployment

High School

Grad

College

Grad

Socio-

economic

Index

Excess Drinking -.23 -.25 .05 .12 .06 .43 -.17 .45 .30 .49

Percent Female .30 -.10 -.01 -.08 -.06 -.09 -.01 .12 .04

Percent African

American

.10 -.01 -.59 -.28 .21 -.34 -.07 -.34

Percent

Hispanic

.74 -.09 .09 .09 -.34 .06 -.13

Percent Foreign

Born

-.16 .37 -.02 -.12 .41 .15

Percent Married .41 -.14 .27 -.06 .38

Log Income -.37 .61 .67 .91

Unem-ployment -.42 -.43 -.44

High School

Grad

.63 .89

College Grad .72

Note: For ease of inspection, correlations are color formatted, ranging from strongly positive (dark blue) to strongly negative (dark red). Cells in white are not

significant, all other correlations significant at a Benjamini–Hochberg corrected significance level of p< 5x10-4.

https://doi.org/10.1371/journal.pone.0194290.t001

Table 2. County-level excessive alcohol consumption prediction accuracy.

Independent Variable Pearson r Mean Absolute Error

Twitter language alone 0.65 2.70

Demographics 0.39 3.40

Socioeconomic index 0.48 3.27

All socioeconomic variables 0.47 3.22

Demographics and socioeconomics 0.54 3.08

Twitter language, demographics and socioeconomics 0.69� 2.61

Note: Prediction performance (Pearson r) using 10-fold cross validation.

� significant decrease in error over demographics and socioeconomics from paired t-test (t = -9.35, p< 1x10-6).

https://doi.org/10.1371/journal.pone.0194290.t002
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drink (r = 0.30), research, paper, final (r = 0.30) and tonight, pm, saturday (r = 0.29). Topics

negatively correlated with excessive alcohol consumption included ready, getting, leave (r =

-0.44), god, dear, pray (r = -0.41), god, blessed, thanking (r = -0.40), love, adore, admire (r =

-0.39), and ready, getting, tonight (r = -0.38). Topics most correlated with excessive alcohol

consumption while controlling for the socioeconomic index are shown in Fig 4. Positively cor-

related topics include beer, drink, drinking (r = 0.19), hate, stupid, sh�t (r = 0.19), drunk, hang-
over, drunken (r = 0.19), hockey, game, win (r = 0.18) andminnesota, thinking, brett (r = 0.17).

Negatively correlated topics include ready, pumped, church (r = -0.26), god, pray, dear (r =

-0.26), god, blessed, thankful (r = -0.25), gosh, dang, darn (r = -0.23) and church, community,
sunday (r = -0.21). Finally, Fig 5 shows topics most correlated with the socioeconomic index.

Positively correlated topics include paper, research, presentation (r = 0.49), training, class, gym

Fig 3. Topics correlated with excessive alcohol consumption. Topics in teal are positively correlated with excess alcohol consumption, while

topics in blue are negatively correlated. The size of the word represents its relative frequency within the topic. Larger words are more frequent,

while smaller words are less frequent. All correlations significant at a Benjamini–Hochberg corrected significance level of p< 1x10-6.

https://doi.org/10.1371/journal.pone.0194290.g003

Fig 4. Topics correlated with excessive alcohol consumption controlled for the socioeconomic index. Topics in teal are positively correlated

with the excess drinking, while topics in blue are negatively correlated. The socioeconomic index was used as a covariate in the regression. All

correlations significant at a Benjamini–Hochberg corrected significance level of p< 1x10-6.

https://doi.org/10.1371/journal.pone.0194290.g004
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(r = 0.48), meeting, conference, staff (r = 0.48), skills, management, business (r = 0.48) and com-
pany, interview, position (r = 0.47). Negatively correlated topics include ain’t, gonna, nothin
(r = -0.52), ready, getting, leave (r = -0.50), mama, baby, momma (r = -0.49), love, growth, men-
tioned (r = -0.49) and tired, sleepy, sooo (r = -0.48).

Mediating language analysis

Mediating language analysis was used to better understand the relationship between county

socioeconomics and excessive alcohol consumption by looking at the Twitter topics which

best explain their relationship. Each topic was considered individually as a mediator, one at a

time, of the relation between the socioeconomic index and excessive alcohol consumption: c is

Fig 5. Topics correlated with the socioeconomic index. Topics in teal are positively correlated with the excess drinking, while topics in blue are

negatively correlated. All correlations significant at a Benjamini–Hochberg corrected significance level of p< 1x10-6.

https://doi.org/10.1371/journal.pone.0194290.g005

Fig 6. Top independent mediators. Topics in teal are positively correlated with the excess drinking, while topics in blue are negatively

correlated. Topics are ordered from left to right by descending mediation effect size (c-c’). All mediation effects were significant at a Benjamini–

Hochberg corrected Sobel significance level of p< 1x10-4.

https://doi.org/10.1371/journal.pone.0194290.g006

Twitter used to predict county excessive alcohol consumption rates

PLOS ONE | https://doi.org/10.1371/journal.pone.0194290 April 4, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0194290.g005
https://doi.org/10.1371/journal.pone.0194290.g006
https://doi.org/10.1371/journal.pone.0194290


the correlation coefficient of the direct path between SES and drinking while c’ represents the

correlation strength once the topic was introduced as mediator.

The results of the mediating language analysis are shown in Fig 6. The topics are arranged

in descending order of mediation effect size (c—c’) with topics positively correlated with excess

alcohol consumption in the top row and negatively correlated topics in the bottom row. Topics

with large mediation effect sizes are those which best explain the relationship between SES and

excessive alcohol consumption. For example, the topic, gettin, ready, leave, not only correlates

directly with less excessive alcohol consumption (r = -.44) and socioeconomic index (r = -.50)

but also can be said to partially explain the variance between lower socioeconomics and lower

excessive alcohol consumption since their relationship significantly decreases with the intro-

duction of the topic (c-c’ = 0.13; p< 1x10-6). Similarly, increased discussion of hockey, game,
Canada not only predicted more excessive alcohol consumption but also explained some of

the variance between higher socioeconomics and more alcohol consumption (c-c’ = 0.08; p<
1x10-5). These mediations demonstrate that not only does language capture information above

and beyond socioeconomics, but that language also directly captures part of the variance in

socioeconomics that is related to excess drinking.

Discussion

This paper sought to examine the relationship between language use on Twitter and county-

level excessive alcohol consumption. Our results confirmed a number of correlates of excessive

alcohol consumption known in the literature including positive correlation with income and

high school and college graduation rates, and negative correlations with percentage African

American, female and unemployed [47]. Most striking, perhaps, is the correlation of excessive

county-level alcohol consumption with higher education, suggesting that higher educated

counties drink more. This goes against stereotypes of the unemployed, depressed individual

with an alcohol use disorder, but is consistent with recent research that reporting that the most

educated Americans drink more alcohol [48]. Counties with higher unemployment also have

lower rates of excessive alcohol consumption, further contradicting existing stereotypes.

Counties with more female and more African-Americans drink less alcohol, possibly suggest-

ing that the culture in these counties discourages problematic alcohol consumption. Future

analysis should more closely examine these counties to see what cultures or practices might

offer protective factors from excessive alcohol consumption and what interventions these

suggest.

In terms of prediction, we found that the combined model (Twitter language plus sociode-

mographic variables) performed better than the model built using only the sociodemographic

variables. Language expressed on Twitter revealed several community-level psychological

characteristics that were significantly associated with excessive alcohol consumption. The top-

ics most positively correlated with excessive alcohol consumption at the county level included

sports, entertainment, educational activities, alcohol mentions, and specific times of the day

and week. Negatively correlated topics related to religion, “getting ready” to engage in social

activities (a major mediator of the effect of socio-economic status), and positive emotions such

as love and admiration. This pattern also held true when we controlled for socioeconomic

variables.

Topics positively correlated with excess alcohol consumption revolve in part around

social activities where alcohol consumption is normative, such as sporting events, music,

art, and food-related festivals. This lends itself to possible public health interventions. Fes-

tivals where alcohol is served may be a safe, socially accepted, place for binge drinkers to

engage in excess alcohol consumption. Thus, these events may be particularly attractive to
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this group and encourage such individuals to relocate to such counties. However, easy

access to such events where alcohol consumption is normative could also encourage binge

drinking and increase rates of alcohol use disorders in a county. Social media interven-

tions targeted at deterring excess alcohol consumption at such events may be particularly

effective in reducing binge drinking and related problems. These interventions have the

potential to be tailored to the specific event and have the potential to reach thousands of

community members.

Counties with higher excessive alcohol consumption talked more about finishing assign-

ments, presentations, and other types of academic and work-related projects. This may indi-

cate that counties with a greater proportion of college students drink more. Non-linguistic

analyses of social media usage habits of college students have previously had limited success in

predicting drinking patterns [49], though alcohol-related social media marketing exposure has

been found to positively predict college student alcohol consumption. Since most social media

platforms, including Twitter, are popular among young adults who are also college students

[35], the findings imply that interventions that target collegiate aged populations who use lan-

guage predictive of excessive alcohol use may be effective. Additionally, social media interven-

tion campaigns that model positive-language for college students may be potentially more

effective than more traditional methods, serving as an additional protective factor in a digital

environment.

Inhabitants of counties that score low on excessive alcohol consumption tweet more about

religion than those in counties that drink more (i.e. religiosity appears to be a protective factor,

consistent with prior work [50, 51] In addition, counties who have lower rates of excess alcohol

consumption express planning and getting ready language, which could be indicative of a cul-

ture that is active and values self-control. Counties that do not consume alcohol excessively

also have tweets that express gratitude and blessings, love and overall positive affect. These

counties may have an infrastructure in place (e.g. attractive public spaces to meet and social-

ize), a high level of generalized trust such that members can fulfill belongingness needs and

thus not feel a need to excessively drink to feel greater connection to others [52,53]

We asked whether linguistic patterns on Twitter predict county-level alcohol consump-

tion and found that they do even above and beyond a large array of socio-economic and

demographic variables. The major advantage of our language-based approach over tradi-

tional survey methods is that we can measure problem drinking unobtrusively and cheaply

in large populations—more rapidly than traditional data sources. Social media-based lan-

guage monitoring and insights may be especially useful in helping younger adults, who are

particularly vulnerable to excess alcohol consumption and who also are heavy social media

users. Longer term, we hope insights from social media language will drive formulations of

interventions

Our results are, of course, not without limitations. They fundamentally correlational, and

etiology is only suggested rather than shown. Further, Twitter itself is not a representative sam-

ple–younger individuals and those identifying as black or Latino are over-represented. Still,

social media yields a quantifiable view into communities that is unobtrusive and natural, and

we evaluated our model against an excessive alcohol consumption outcome based on represen-

tative samples. We have demonstrated that biased social media data can still be used to predict

unbiased outcomes.

Traditional self-report questionnaires that measure excessive alcohol consumption are

invasive and time consuming for responders, subject to reference biases, and limited to prede-

termined factors. Social media offers a large-scale, real-time, and unobtrusive window into

health behaviors and attitudes. The words people use in their daily lives reveal important

aspects of their social and psychological worlds. We found individuals on Twitter report on
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their alcohol use, their social interactions, and the events around them. These data streams

occurred in real time and were marked with context, including location and can serve as an

indicator of health status. In conclusion, we found this data source as a viable measure of

county level excessive alcohol consumption.

This research takes an important step in advancing the science of measuring excessive alco-

hol consumption and has the potential to be used to improve public health. First, we provide a

meaningful interpretation of county level excessive drinking using Twitter data. Second, we

used this data source to provide new insights into the attitudes and interactions that promote

excessive drinking (and protect from it). Third, this research will aid public health officials in

identifying social media content, locations, and individuals who are at high risk for excessive

alcohol consumption.

Future work should explore which factors in the culture (e.g. social cohesion, religion,

future orientation, work ethic) of counties drive excessive alcohol consumption and which

may be protective. Future work could also attempt to design and test interventions that reduce

problem drinking such as targeting social norms for drinking at or to produce apps that alert

social media users when their language suggests that they may be at risk of excessive alcohol

consumption.
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